ECE 206 Fall 2019 Practice Problems Week 10

- 1. (a) Using the transformation $x = r \cos \theta$, $y = r \sin \theta$ along with the chain rule, express the derivatives $u_r, u_\theta, v_r, v_\theta$ in terms of u_x, u_y, v_x, v_y to derive the polar form of the Cauchy-Riemann equations (CRE).
 - (b) Find the formula for the derivative $f'(z) = e^{-j\theta}(u_r + jv_r)$ in polar coordinates. (Hint: start with the formula $f'(z) = u_x + jv_x$, and solve the equations from the previous part for u_x and v_x .)
 - (c) Verify the CRE in polar form hold for the following mappings, and use the above to determine f'(z).
 - i. $f(z) = \frac{1}{z}$
 - ii. $f(z) = \sqrt{z}$ (the principal value of the square root)
- 2. (a) Let $f(z) = u(r, \theta) + iv(r, \theta)$ be differentiable in a domain that does not include the origin. Starting from the Cauchy-Riemann equations in polar coordinates, show that the function $u(r, \theta)$ satisfies the partial differential equation

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

which is the polar form of Laplace's equation. One can also show that the same equation holds for v. Assume that u, v are C^2 .

- (b) Verify that $u(r,\theta) = \ln r$ is harmonic in the slit plane $D = \{re^{j\theta} \mid r > 0 \text{ and } -\pi < \theta < \pi\}$. (That is, show it satisfies the Laplace equation in polar form). Use this to show that the harmonic conjugate of u is $v(r, \theta) = \theta$.
- 3. For each of the following, a function u of variables x and y is given. Show that u can be the real part of some differentiable mapping f(z). Determine the corresponding imaginary part v of f, and determine an expression of f(z) purely in terms of z.
 - (a) $u(x,y) = x^2 + 4x y^2 + 2y$
 - (b) $u(x, y) = \sinh x \sin y$
 - (c) $u(x,y) = e^x \cos y y$
- 4. Find the family of curves that is everywhere orthogonal to the family of curves $x^3y xy^3 = c$ for constants $c \in \mathbb{R}$.
- 5. Find the equations for the families of level curves of the component functions u and v when $f(z) = \frac{1}{z}$. Make a sketch of a few level curves of each, indicating the orthogonality.

6. Use parametric representations for Γ to evaluate $\int_{\Gamma} \frac{z+2}{z} dz$, where Γ is

- (a) the semicircle $z = 2e^{j\theta}$ $(0 \le \theta \le \pi)$
- (b) the semicircle $z = 2e^{j\theta}$ $(\pi \le \theta \le 2\pi)$
- (c) the circle $z = 2e^{j\theta}$ $(0 \le \theta \le 2\pi)$

7. Use parametric representations for Γ to evaluate $\int_{\Gamma} (z-1) dz$, where Γ is

- (a) the semicircle $z = 1 + e^{j\theta}$ $(\pi \le \theta \le 2\pi)$
- (b) the segment $0 \le x \le 2$ of the real axis Why are the answers the same? Show another way to obtain the result.