
ECE 206 Fall 2019

Practice Problems Week 10

Solutions

1. (a) Using the transformation x = r cos θ, y = r sin θ along with the chain rule, express the derivatives
ur, uθ, vr, vθ in terms of ux, uy, vx, vy to derive the polar form of the Cauchy-Riemann equations
(CRE).

Solution. By the chain rule,

ur = uxxr + uyyr = cos θux + sin θuy (1)

uθ = uxxθ + uyyθ = −r sin θux + r cos θuy (2)

vr = vxxr + vyyr = cos θvx + sin θvy (3)

vθ = vxxθ + vyyθ = −r sin θvx + r cos θvy (4)

Using the CRE, we can express (4) as

vθ = r(sin θuy + cos θux) = rur

Similarly, we can write (2) as

uθ = −r(sin θvy + cos θvx) = −rvr

This gives the CRE in polar form:

ur =
1

r
vθ,

1

r
uθ = −vr

(b) Find the formula for the derivative f ′(z) = e−jθ(ur + jvr) in polar coordinates. (Hint: start with
the formula f ′(z) = ux + jvx, and solve the equations from the previous part for ux and vx.)

Solution. We attempt to eliminate uy from (1) and (2). This can be done by multiplying
(1) through by r cos θ, multiplying (2) through by sin θ, and subtracting. This gives:

r cos θur − sin θuθ = r cos2 θux + r sin2 θux =⇒ ux = cos θur −
sin θ

r
uθ

The same operations can be done to isolate for vx:

vx = cos θvr −
sin θ

r
vθ
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Thus, f ′(z) can be expressed as

f ′(z) = ux + jvx

= cos θur −
sin θ

r
uθ + j(cos θvr −

sin θ

r
vθ)

= cos θur + sin θvr + j(cos θvr − sin θur) using the CRE

= ur(cos θ − j sin θ) + vr(j cos θ + sin θ)

= ure
−jθ + jvr(cos θ − sin θ)

= e−jθ(ur + jvr)

(c) Verify the CRE in polar form hold for the following mappings, and use the above to determine
f ′(z).

i. f(z) =
1

z

Solution. With z = rejθ in polar coordinates, we have

f(z) =
1

z
=

1

rejθ
=

1

r
e−jθ =

1

r
cos θ − j 1

r
sin θ.

That is, u(r, θ) =
cos θ

r
and v(r, θ) = − sin θ

r
. Checking the CRE, we have

ur = −cos θ

r2
, uθ = − sin θ

r
, vr =

sin θ

r2
, vθ = −cos θ

r

It is observed that the CRE are satisfied. Now, we use the formula for the derivative
to find

f ′(z) = e−jθ(ur + jvr) = e−jθ(−cos θ

r2
+ j

sin θ

r2
)

= −e
−jθ

r2
(cos θ − j sin θ)

= −e
−2jθ

r2

= − 1

(rejθ)2

= − 1

z2

ii. f(z) =
√
z (the principal value of the square root)

Solution. Note here that f(z) =
√
z is only continuous and differentiable on the slit

plane C \ (−∞, 0] = {rejθ | r > 0 and θ ∈ (−π, π)}. For r > 0 and −π < θ < π, we
have

f(z) =
√
rjθ
√
rejθ/2 =

√
r cos

θ

2
+ j
√
r sin

θ

2
.

That is, u(r, θ) =
√
r cos θ/2 and v(r, θ) =

√
r sin θ/2. The partial derivatives of u and
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v are

ur =
1

2
√
r

cos
θ

2
, uθ = −

√
r

2
sin

θ

2
, vr =

1

2
√
r

sin
θ

2
, vθ =

√
r

2
cos

θ

2
.

It is observed that the CRE are satisfied. Now, we use the formula for the derivative
to find

f ′(z) = e−jθ(ur + jvr) = e−jθ
(

1

2
√
r

cos
θ

2
+ j

1

2
√
r

sin
θ

2

)
=

1

2
√
r
e−jθejθ/2

=
1

2
√
rejθ/2

=
1

2
√
z
.

2. (a) Let f(z) = u(r, θ)+jv(r, θ) be differentiable in a domain that does not include the origin. Starting
from the Cauchy-Riemann equations in polar coordinates, show that the function u(r, θ) satisfies
the partial differential equation

urr +
1

r
ur +

1

r2
uθθ = 0

which is the polar form of Laplace’s equation. One can also show that the same equation holds
for v. Assume that u, v are C2.

Solution. In polar form, the CRE are:

ur =
1

r
vθ,

1

r
uθ = −vr

Differentiating the first equation with respect to r (using the product rule on the right):

urr = − 1

r2
vθ +

1

r
vθr

Differentiating the second equation with respect to θ:

1

r
uθθ = −vrθ

Now, since v ∈ C2, vrθ = vθr. Also, we can use the first CRE for vθ to get:

urr = −1

r
ur −

1

r2
uθθ =⇒ urr +

1

r
ur +

1

r2
uθθ = 0

(b) Verify that u(r, θ) = ln r is harmonic in the slit plane D = {rejθ | r > 0 and −π < θ < π}. (That
is, show it satisfies the Laplace equation in polar form). Use this to show that the harmonic
conjugate of u is v(r, θ) = θ.

Solution. We have ur = 1
r , urr = − 1

r2 , uθ = uθθ = 0. The Laplace equation gives:

− 1

r2
+

1

r

(
1

r

)
+ 0 = 0

The harmonic conjugate must satisfy the CRE in polar coordinates. So, ur = 1
rvθ =⇒

3



vθ = 1 =⇒ v = θ + g(r), where g is an arbitrary function. Now differentiate with respect
to r: vr = g′(r), which from the second CRE must equal 1

ruθ, which is 0. Thus, g(r) = c
for some constant c, which we may take to be zero. A harmonic conjugate is v(r, θ) = θ.

3. For each of the following, a function u of variables x and y is given. Show that u can be the real part of
some differentiable mapping f(z). Determine the corresponding imaginary part v of f , and determine
an expression of f(z) purely in terms of z.

(a) u(x, y) = x2 + 4x− y2 + 2y

Solution. We first check that u is harmonic. Note that uxx = 2 and uyy = −2, so
uxx + uyy = 0 and thus u is indeed harmonic. In order to find a function v such that
f = u + jv is a differentiable mapping, the functions u and v must satisfy the Cauchy-
Riemann equations. That is, u and v must satisfy

ux = 2x+ 4 = vy and uy = −2y + 2 = −vx

It follows that v must be of the form

v(x, y) =

�
(2x+ 4) dy = 2xy + 4y + g(x)

where g is a function of x. Differentiating with respect to x and comparing with the second
Cauchy-Riemann equation above, it follows that

vx(x, y) = 2y + g′(x) = −uy = 2y − 2,

and thus g′(x) = −2. Hence g(x) = −2x + c for some constant c ∈ R which we may take
to be equal to 0. Thus v(x, y) = 2xy + 4y − 2x.

The corresponding complex differentiable is f(x+jy) = x2 +4x−y2 +2y+j(2xy+4y−2x).
Rearranging, we can write this as

f(z) = f(x+ jy) =
(
4x+ 4jy

)
+
(
−j2x+ 2y

)
+

(
x2 − y2 + j2xy

)
= 4(x+ jy)− j2(x+ jy) + (x+ jy)2

= 4z − j2z + z2,

and thus the differentiable mapping is f(z) = 4z − j2z + z2 which has real part given by
u.

Remark. Given a harmonic function u, a function v such that u + jv is a differentiable
mapping is called the harmonic conjugate of u.

In this problem, the function defined by v(x, y) = 2xy+ 4y− 2x is the harmonic conjugate
of the function defined by u(x, y) = x2 + 4x− y2 + 2y.

(b) u(x, y) = sinhx sin y
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Solution. We first check that u is harmonic. Note that

∂2

∂x2
sinhx = sinhx and

∂2

∂y2
sin y = − sin y,

and thus uxx = sinhx sin y = u and uyy = − sinhx sin y − u so that u is indeed harmonic.
We now find the function v that is the harmonic conjugate of u. By the Cauchy-Riemann
equations, the function v must satisfy

ux = coshx sin y = vy and uy = sinhx cos y = −vx

Integrating the first equation with respect to y, we get

v =

� (
coshx sin y

)
dy = − coshx cos y + g(x)

where g is some function of x. Differentiating with respect to x y

vx = − sinhx cos y + g′(x).

Comparing with the second Cauchy-Riemann equation above, we find that g′(x) = 0 or
g(x) = c for some constant c ∈ R, which we may take to be zero. The harmonic conjugate
of u is thus v(x, y) = − coshx cos y, and the mapping defined by

f(z) = f(x+ jy) = sinhx sin y − j(coshx cos y)

is differentiable. It can be verified that f(z) can be written as f(z) = −j cosh z.

(c) u(x, y) = ex cos y − y

Solution. To see that u is harmonic, note that uxx = ex cos y and uyy = −ex cos y, and so
u is indeed harmonic. By the Cauchy-Riemann equations, the harmonic conjugate v must
satisfy

ux = ex cos y = vy and uy = −ex sin y − 1 = −vx
Integrating the first equation with respect to y, we get

v =

� (
ex cos y

)
dy = ex sin y + g(x)

where g is some function of x. Differentiating with respect to x gives

vx = ex sin y + g(x).

Comparing with the second Cauchy-Riemann equation above, we find that g′(x) = 1 or
g(x) = x + c for some constant c ∈ R, which we may take to be zero. The harmonic
conjugate of u is thus v(x, y) = ex sin y + x, and the mapping defined by

f(z) = f(x+ jy) = ex cos y − y + j (ex sin y + x)

= ex(cos y + j sinx)− y + jx

= ex+jy + j(x+ jy)

= ez + jz

is differentiable.
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4. Find the family of curves that is everywhere orthogonal to the family of curves x3y − xy3 = c for
constants c ∈ R.

Solution. Recall from the lecture that if two functions u, v : R2 → R are harmonic conjugatesa

of each other, then their level curves are orthogonal to each other. Define the function u(x, y) =
x3y−xy3. We need to find a function v : R2 → R such that u and v satisfy the Cauchy-Riemann
equations (CRE). Taking the derivative of u with respect to x, we have ux = 3x2 − y3. From
the CRE, we need that vy = ux, and thus

v =
3

2
x2y2 − 1

4
y4 + g(x),

where g is an arbitrary function. We also require that vx = −uy, where the derivative of u with
respect to y is uy = x3 − 3xy2. Differentiating v with respect to x, we find vx = 3xy2 + g′(x),
and equating with −uy yields that g′(x) = −x3, or g(x) = − 1

4x
4 + b for some constant b ∈ R.

Thus

v(x, y) =
3

2
x2y2 − 1

4
(x4 + y4) + b

Hence the family of curves that is orthogonal to the curves x3y − xy3 = c can be given by
v(x, y) = a, where a ∈ R is a constant, or equivalently (after multiplying everything by −4)

x4 + y4 − 6x2y2 = d

where d = −4a is another constant. Some level curves of u (in black) and v (in red) are shown
in the following figure.

-10 -5 0 5 10

-10

-5

0

5

10

(We may note that u and v are the real and imaginary components of the differentiable f(z) =

−j z
4

4 .)

aTwo harmonic functions u and v are harmonic conjugates if they satisfy the Cauchy-Riemann equations.

5. Find the equations for the families of level curves of the component functions u and v when f(z) =
1

z
.

Make a sketch of a few level curves of each, indicating the orthogonality.

Solution. Writing f(z) = u(x, y) + jv(x, y) with z = x+ jy, we have

1

z
=

1

x+ jy
=

x− jy
x2 + y2

=
x

x2 + y2
− j y

x2 + y2
.
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That is, the components of f are

u(x, y) =
x

x2 + y2
and v(x, y) = − y

x2 + y2
.

The level curves u = c1 for constants c1 ∈ R are determined by

x

x2 + y2
= c1 −→ x2 + y2 =

1

c1
x −→

(
x− 1

2c1

)2

+ y2 =
1

4c21
.

which is the equation for a circle centred at ( 1
2c1
, 0) with radius 1

2c1
, i.e. circles centred on the

x-axis that pass through the origin.

The level curves v = c2 for constants c2 ∈ R are determined by

− y

x2 + y2
= c2 −→ x2 + y2 = − 1

c2
y −→ x2 +

(
y +

1

2c2

)2

=
1

4c22

which are circles centred at (0,− 1
2c2

) with radius 1
2c2

, i.e. circles centred on the y−axis that
pass through the origin.

See a diagram with some of the level curves of u and v plotted below. Notice in the figure that
all of the intersections are orthogonal.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Level curves of u(x, y) = x
x2+y2 (in black) and v(x, y) = −y

x2+y2 (in dashed red).

6. Use parametric representations for Γ to evaluate

�
Γ

z + 2

z
dz, where Γ is

(a) the semicircle z = 2ejθ (0 ≤ θ ≤ π)
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Solution. Here we use the parameterization γ(θ) = 2ejθ which has derivative γ′(θ) = 2jejθ.
We may evaluate the desired integral as

� π

0

(2 + 2ejθ)

2ejθ
2jejθ dθ = 2j

� π

0

(
ejθ + 1

)
dθ = 2j

(
1

j
(ejπ − 1) + π

)
= −4 + 2πj

where ejπ = cosπ = −1.

(b) the semicircle z = 2ejθ (π ≤ θ ≤ 2π)

Solution. Same calculation as part (a), just different limits of integration.

� 2π

π

(2 + 2ejθ)

2ejθ
2jejθ dθ = · · · = 2j

(
1

j
(e2jπ − ejπ) + π

)
= 4 + 2πj

(c) the circle z = 2ejθ (0 ≤ θ ≤ 2π)

Solution. The circle is made up of the two semi-circles from the previous parts, so this
integral is simply the sum, which is 4πj.

7. Use parametric representations for Γ to evaluate

�
Γ

(z − 1) dz, where Γ is

(a) the semicircle z = 1 + ejθ (π ≤ θ ≤ 2π)

Solution. We use the parameterization γ(θ) = 1 + ejθ for θ ∈ [π, 2π], which has derivative
γ′(θ) = jejθ. We therefore have

�
Γ

(z − 1) dz =

� 2π

π

(
ejθ

)
jejθ dθ = j

1

2j
e2jθ

∣∣∣∣2π
π

=
1

2
(e4πj − e2πj) = 0.

A depiction of the path is shown below.

Re

Im

21

−j
Γ

(b) the segment 0 ≤ x ≤ 2 of the real axis

Solution. Here we use the parameterization γ(t) = t for t ∈ [0, 2], which has derivative
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γ′(t) = 1. We therefore have

�
Γ

(z − 1) dz =

� 2

0

(t− 1) dt =

[
t2

2
− t

]2

t=0

= 0.

A depiction of the path is shown below.

Re

Im

21

Γ

Why are the answers the same? Show another way to obtain the result.

Solution. The results are the same because the endpoints of the paths are the same, and
f(z) = z − 1 is a mapping that is differentiable everywhere.

We could have obtained this result using an anti-derivative of f . That is, since it holds

that d
dz

(
z2

2 − z
)

= z − 1, we have

�
Γ

(z − 1) dz =

� 2

0

(z − 1) dz =

[
z2

2
− z

]2

0

= 0

for any path Γ whose initial and end points are 0 and 2 respectively.
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