ECE 206 Fall 2019

Practice Problems Week 11

1. Let Γ be the contour defined by the path $\gamma(\theta) = e^{j\theta}$ for $-\pi \le \theta \le \pi$. Evaluate the following integrals.

(a)
$$\int_{\Gamma} \operatorname{Log} z \, dz$$

(b)
$$\int_{\Gamma} z^3 \operatorname{Log} z \, dz$$

2. Let Γ denote the circle $|z-z_0|=R$, taken counterclockwise. Compute the following integrals using the path $\gamma(\theta)=z_0+Re^{j\theta}$ for $\theta\in(-\pi,\pi)$.

(a)
$$\int_{\Gamma_0} \frac{1}{z - z_0} \, dz$$

(b)
$$\int_{\Gamma_0} (z-z_0)^{n-1} dz$$
, where $n \in \mathbb{Z}, n \neq 0$

- (c) $\int_{\Gamma_0} (z-z_0)^{a-1} dz$ where $a \in \mathbb{R}$ is a constant with $a \neq 0$. Here, we take $(z-z_0)^{a-1}$ to be the principal value.
- 3. Use anti-derivatives to evaluate the following integrals.

(a)
$$\int_{j}^{j/2} e^{\pi z} dz$$

(b)
$$\int_0^{\pi+2j} \cos\left(\frac{z}{2}\right) dz$$

(c)
$$\int_{j}^{3j} (z-2j)^3 dz$$

4. Let Γ be the circle |z|=1. For which of the following functions is $\int_{\Gamma} f(z) dz = 0$?

(a)
$$f(z) = z^3$$

(b)
$$f(z) = \frac{e^z}{z}$$

(c)
$$f(z) = \frac{e^z}{z - 2}$$

(d)
$$f(z) = Log(2z - 3j)$$

5. Let Γ_1 be the circle |z|=1 and Γ_2 be the circle |z|=3, each oriented counter clockwise. For which of the following functions does the equality $\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$ hold?

1

(a)
$$f(z) = \frac{1}{z - 4j}$$

(b)
$$f(z) = \frac{z}{z+2}$$

- (c) f(z) = Log z
- 6. Use the Cauchy Integral Formula to evaluate the following integrals, where Γ is the circle |z|=2.

(a)
$$\int_{\Gamma} \frac{e^z}{z - j\frac{\pi}{2}} dz$$

(b)
$$\int_{\Gamma} \frac{z^2 + 1}{z(z^2 + 9)} dz$$

(c)
$$\oint_{\Gamma} \frac{z}{2z+1} dz$$

7. Use the generalized Cauchy Integral Formula to evaluate the following, where Γ is the square with edges on $x = \pm 2$ and $y = \pm 2$.

(a)
$$\oint_{\Gamma} \frac{\tan(\frac{z}{2})}{(z - \frac{\pi}{2})^2} dz$$

(b)
$$\int_{\Gamma} \frac{ze^z}{(z-1)^4} dz$$

8. Let Γ be the circle |z - j| = 2. Evaluate

(a)
$$\int_{\Gamma} \frac{1}{z^2 + 4} \, dz$$

(b)
$$\int_{\Gamma} \frac{1}{(z^2+4)^2} dz$$

9. Let Γ be the unit circle parameterized by $z = e^{j\theta}$ for $-\pi \le \theta \le \pi$. Show that for any real constant a,

$$\int_{\Gamma} \frac{e^{az}}{z} \, dz = 2\pi j$$

10. Let Γ be the circle |z|=2. Evaluate $\int_{\Gamma} \frac{\sin z}{z^2+1} \, dz$.