
ECE 206 Fall 2019

Practice Problems Weeks 12 & 13

Solutions

1. (a) Find the Taylor series expansions for sinh z and cosh z about z0 = 0 by starting with Taylor series
for sin z and cos z,

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
and cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
,

and using the identities sin(jz) = j sinh z and cos(jz) = cosh z.

Solution. Start from the Taylor series for sin z above and use the identity sin(jz) = j sinh z
to obtain

sinh z = −j sin(jz) = −j
∞∑
n=0

(−1)n
(jz)2n+1

(2n+ 1)!
=

∞∑
n=0

−j2 z2n+1

(2n+ 1)!
=

∞∑
n=0

z2n+1

(2n+ 1)!
,

where we use the facts that j2n+1 = j2nj = (j2)nj = (−1)nj and (−1)n(−1)n = (−1)2n =
1 for any integer n. Similarly, we have

cosh z = cos(jz) =

∞∑
n=0

(−1)n
(jz)2n

(2n)!
=

∞∑
n=0

z2n

(2n)!
.

(b) Find the Taylor series expansion of f(z) = z
z4+9 about z0 = 0. Give the region of validity.

Solution. We first rewrite f(z) in terms of functions with known Taylor series as

f(z) =
z

z4 + 9
=
z

9

1

1 + z4

9

and use the known Taylor series for functions of the form 1/(1−w) where we set w = −z4/9
to find that

1

1 + z4

9

=

∞∑
n=0

(
−z4

9

)n
, which is valid in the region where

∣∣∣∣z4

9

∣∣∣∣ < 1.

Multiplying through, we obtain

f(z) =
z

9

( ∞∑
n=0

(−1)n

9n
z4n

)
=

∞∑
n=0

(−1)n

9n+1
z4n+1

which is valid in the region where |z| <
√

3.
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2. Find all possible Laurent series expansions for f(z) = 1
z+j about z0 = 0 and give the region of validity

for each.

3. Find the first three nonzero terms of the Laurent series for each of the following mappings that is valid
in the given regions.

(a)
1

sin z
in the region where 0 < |z| < π.

Solution. Using the known Taylor series expansion for sin z, we find

1

sin z
=

1

z − z3

3! + z5

5! −
z7

7! + · · ·

=
1

z

1

1−
(
z2

3! −
z4

5! + z6

7! + · · ·
)

=
1

z

∞∑
n=0

(
z2

3!
− z4

5!
+
z6

7!
+ · · ·

)n
=

1

z

(
1 +

(
z2

3!
− z4

5!
+
z6

7!
+ · · ·

)
+

(
z2

3!
− z4

5!
+
z6

7!
+ · · ·

)2

+ · · ·

)

=
1

z

(
1 +

z2

3!
+

(
1

3!2
− 1

5!

)
z4 + · · ·

)
=

1

z
+
z

6
+

7z3

360
+ · · · ,

where we make use of the Taylor series expansion for 1/(1− w) and multiply out.

(b)
1

cos z
in the region where 0 <

∣∣z − π
2

∣∣ < π.

Solution. We first rewrite f(z) as a funciton of z − π/2 by noting that

cos z = cos
(
z − π

2
+
π

2

)
= − sin

(
z − π

2

)
.

Now, making use of the Laurent series for 1/ sinw that we found in part (a), we have

1

cos z
= − 1

sin
(
z − π

2

)
= − 1

z − π
2

− 1

6

(
z − π

2

)
− 7

360

(
z − π

2

)3

+ · · · .

(c) e−1/z3 in the region where 0 < |z| <∞.

Solution. Here we simply set w = −1/z3 and use the known Taylor series for ew to find
that

e−1/z3 = 1− 1

z3
+

1

2!

(
− 1

z3

)2

+ · · ·

= 1− 1

z3
+

1

2

1

z6
− · · ·
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4. Find the Laurent series for f(z) =
1

z(z − 1)2
about

(a) z = 0 that is valid for 0 < |z| < 1

Solution. We first start with the fact that

d

dz

(
1

1− z

)
=

1

(1− z)2
.

Since we know the Taylor series for 1/(1− z), this means we can find the Taylor series of
1/(1− z)2 by

1

(1− z)2
=

d

dz

(
1

1− z

)
=

d

dz

∞∑
n=0

zn =

∞∑
n=0

nzn−1, (∗)

which is valid only for |z| < 1. Thus the Laurent series for f is given by

f(z) =
1

z

∞∑
n=0

nzn−1 =
1

z
+ 2 + 3z + 4z2 + · · · = 1

z
+

∞∑
n=0

(n+ 2)zn,

which is valid for 0 < |z| < 1.

(b) z = 0 that is valid for |z| > 1

Solution. We first rearrange the terms to write f(z) as a function of 1/z and find that

1

(z − 1)2
=

1

z2
· 1(

1− 1
z

)2 .
We now make use of the Laurent series from (∗) in part (a) above to find that

1(
1− 1

z

)2 =

∞∑
n=0

n

(
1

z

)n−1

which is valid for 0 < |1/z| < 1, or equivalently 1 < |z| < ∞. The desired Laurent series
is therefore

f(z) =
1

z3

∞∑
n=0

n

(
1

z

)n−1

=

∞∑
n=0

n

zn+2
=

∞∑
n=0

n

zn+2
.

(c) z = 1 that is valid for 0 < |z − 1| < 1

Solution. For this and the next part, we must express 1/z in terms of powers of z − 1.
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We can do so as follows:
1

z
=

1

1− (1− z)
. Then

f(z) =
1

z(z − 1)2
=

1

(z − 1)2

1

1− (1− z)
=

1

(z − 1)2

∞∑
n=0

(1− z)n

=
1

(z − 1)2

(
1 + (1− z) + (1− z)2 + . . .

)
=

1

(z − 1)2

(
1− (z − 1) + (z − 1)2 − . . .

)
=

1

(z − 1)2
− 1

z − 1
+

∞∑
n=0

(−1)n(z − 1)n.

(d) z = 1 that is valid for |z − 1| > 1

Solution.

f(z) =
1

(z − 1)2
· 1

1− z
· 1

1
1−z − 1

=
1

(z − 1)3
· 1

1− 1
1−z

=
1

(z − 1)3

∞∑
n=0

(
1

1− z

)n
We can write this as

f(z) =
1

(z − 1)3

∞∑
n=0

(−1)n

(z − 1)n
=

∞∑
n=0

(−1)n

(z − 1)n+3

5. For each function, find and identify the type of each singularity (i.e., removable, pole of order m, or
isolated singularity) and find the residue there.

(a) f(z) =
z2 + 2

z − 1

Solution. The pole of f is a pole of order 1 at z = 1. The residue here is

Res (f, 1) = lim
z→1

[(z − 1)f(z)] = lim
z→1

z2 + 2 = 3

(b) f(z) =

(
z

2z + 1

)3

Solution. There is a pole of order 3 at z = −1/2. We may re-write f(z) as a function of
z + 1/2 as

f(z) =
z3/8

(z + 1
2 )3

The residue is given by

Res

(
f,−1

2

)
=

1

2!
lim
z→− 1

2

[
d2

dz2

(
z3

8

)]
=

1

2
lim
z→− 1

2

3z

4
= − 3

16
.
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(c) f(z) =
1

z3(z − 1)2(z − 2)

Solution. Here we have a pole of order 3 at z = 0, a pole of order 2 at z = 1, and a simple
pole at z = 2. The residue at z = 2 is

Res(f, 2) = lim
z→2

1

z3(z − 1)2
=

1

8
.

At z = 1, the residue is

Res(f, 1) = lim
z→1

[
d

dz

(
1

z3(z − 2)

)]
= lim
z→1

d

dz
(z−3(z − 2)−1) = · · · = 2.

At z = 0, the residue is

Res(f, 0) =
1

2!
lim
z→0

[
d2

dz2

(
1

(z − 1)2(z − 2)

)]
=

1

2!
lim
z→0

d2

dz2
((z−1)−2(z−2)−1) = · · · = −17

8
.

6. For each of the following, show that the singular point is a pole. Determine the order of the pole as
well as the residue.

(a) f(z) =
1− cosh z

z3

Solution. Writing out the Laurent series, we have

f(z) =
1

z3

(
1−

(
1 +

z2

2!
+
z4

4!
+ . . .

))
= − 1

2z
− z

4!
− . . .

and this expansion is valid for all z 6= 0. Thus, f has a pole of order 1 at z = 0 and the
residue at this point is is − 1

2 .

(b) f(z) =
1− e2z

z4

Solution. The Laurent expansion is

f(z) =
1

z4

(
1−

(
1 + 2z +

4z2

2!
+

8z3

3!
+ . . .

))
= − 2

z3
− 2

z2
− 4

3z
− . . .

which is valid for all z 6= 0. Thus, f has a pole of order 3 at z = 0, with residue − 4
3 .

(c) f(z) =
e2z

(z − 1)2

Solution. First, re-write f with a shift, then use the Taylor series for the exponential to
expand f as

f(z) =
e2(z−1+1)

(z − 1)2
=

e2

(z − 1)2

(
1 + 2(z − 1) + 4

(z − 1)2

2!
+ . . .

)
=

e2

(z − 1)2
+

2e2

z − 1
+2e2+. . .

which is valid for all z 6= 1. Thus f has a pole of order 2 at z = 1, with residue 2e2.

5



7. Find the residue at z = 0 of the following functions by writing out the Laurent series.

(a) f(z) =
1

z + z2

Solution. We can expand this as

f(z) =
1

z

1

1− (−z)
=

1

z

(
1 + (−1)z + (−1)2z2 + (−1)3z3 + · · ·

)
=

1

z
− 1 + z − z2 + · · · = 1

z
−
∞∑
n=0

(−1)nzn.

This expansion is valid for all 0 < |z| < 1. Hence z = 0 is a pole of order 1 of f and the
desired residue is Res(f, 0) = 1.

(b) f(z) = z cos

(
1

z

)
Solution. Using the known Taylor series for cos, we can expand this as

f(z) = z cos

(
1

z

)
= z

(
1− 1

2!z2
+

1

4!z4
+ . . .

)
= z − 1

2!z
+ . . .

This expansion is valid for all z 6= 0. Hence z = 0 is an essential singularity of f and the
residue of f at z = 0 is − 1

2 .

(c) f(z) =
z − sin z

z3

Solution. Using the known Taylor series for sin, we can expand this as

f(z) =
1

z3
(z − sin z) =

1

z3

(
z −

(
z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

))
=

1

3!
− z2

5!
+
z4

7!
· · ·

=

∞∑
n=0

(−1)n

(2n+ 3)!
z2n,

which has no principal part and is valid for all z ∈ C. Hence the point z = 0 is a removeable
singularity of f and Res(f, 0) = 0. In fact, with repeated application of L’hopital’s rule,
we have

lim
z→0

z − sin z

z3
= lim
z→0

cos z

3z2
= lim
z→0

− sin z

6z
lim
z→0

− cos z

6
= −1

6
.

(d) f(z) =
sinh z

z4(1− z2)
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Solution. Using the known expansion for sinh, we have

f(z) =
sinh z

z4(1− z2)
=

1

z4
· sinh z · 1

1− z2
=

1

z4

(
z +

z3

3!
+
z5

5!
+ . . .

)(
1 + z2 + z4 + . . .

)
=

1

z4

(
z +

(
1

3!
+ 1

)
z3 + . . .

)
=

1

z3
+

7

6z
+ . . .

and this expansion is valid for all 0 < |z| < 1. Hence the function f has a pole of order 3
at the point z = 0 and the the residue at z = 0 is 7

6 .

8. Consider the function f(z) = sin z
(1−cos z)2 .

(a) Show that the point z = 0 is a pole of the function f(z) and find the order of the pole.

Solution. Here we will use Theorem 24.4.1 from the textbook, which we will restate here.

Theorem. (Nth-order pole)

If p(z) and q(z) have zeros of order P and Q, respectively, at z = z0, then f(z) = p(z)
q(z) has

a pole or order N = Q− P there if Q > P , and is analytic there if Q ≤ P .

Recall that a function g(z) has a zero of order n at z = z0 if

g(z0) = g′(z0) = g′′(x0) · · · = g(n−1)(z0) = 0 but g(n)(z0) 6= 0.

We can use the Theorem by taking p(z) = sin z and q(z) = (1 − cos z)2. Note that
p(z) = sin z has a first order zero at z = 0 since sin(0) = 0 but cos(0) = 1 6= 0. However,
q(z) = (1− cos z)2 has a fourth order zero at z = 0 since g(0) = g′(0) = g′′(0) = g′′′(0) = 0
but g(4) = 6 6= 1. Hence z = 0 is a pole of order 3.

(b) If m is the order of the pole, find the coefficient c−m of 1
zm term in the Laurent series expansion

of f at z = 0.

Solution. Note that 0 is a third order pole, so we may compute c−3 using successive
applications of L’hopital’s rule as

lim
z→0

[
z3f(z)

]
= lim
z→0

z3 sin z

(1− cos z)2

= lim
z→0

3z2 sin z + z3 cos z

2(1− cos z) sin z

= lim
z→0

6z sin z + 6z2 cos z − z3 sin z

2(1− cos z) sin z

= · · ·
= 4.

(c) What is the residue of f(z) at z = 0?
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9. Use the method of ML-estimation to evaluate the following improper integrals by integrating around
a semicircular contour in the upper half-plane.

(a)

� ∞
−∞

dx

(x2 + 1)3

Solution. For each R > 1, consider the simple closed contour consisting of the semicircle
of radius R centered at the origin that lies in the upper half-plane and the part of the real
axis from −R to R (pictured below). Consider the function

f(z) =
1

(z2 + 1)3
=

1

(z − j)3

1

(z + j)3
,

which is analytic everywhere except at the singularities z = ±j.

Re

Im

R−R

jR

j

−j

CR

By choosing the function g(z) = 1
(z+j)3 and noting that g′(z) = −3

(z+j)4 and g′′(z) = 12
(z+j)5 ,

we can use the Cauchy integral formula to see that
�

ΓR∪CR

1

(z2 + 1)3
dz =

�
ΓR∪CR

g(z)

(z − j)3
dz =

2πj

2!
g′′(j) = πj

12

(j + j)5
=

3π

8
,

which holds for any R > 1. Note that
∣∣z2 + 1

∣∣ ≥ |z|2 − 1 for any z ∈ C. Thus, for any
complex number z = Rejθ on the semicircular arc of radius R > 1, we have |z| = R and∣∣∣∣ 1

(z2 + 1)3

∣∣∣∣ =
1

|z2 + 1|3
≤ 1(
|z|2 − 1

)3 =
1

(R2 − 1)3
.

Thus, by the ML-theorem, it holds that∣∣∣∣�
CR

1

(z2 + 1)3
dz

∣∣∣∣ ≤ πR

(R2 − 1)3
,

where CR is the contour of the semicircular arc from R to −R going counterclockwise in
the upper half-plane. Moreover, we have that

lim
R→∞

(�
CR

1

(z2 + 1)3
dz

)
= 0 since lim

R→∞

πR

(R2 − 1)3
= 0.

Finally, we compute the desired integral as

� ∞
−∞

dx

(x2 + 1)3
= lim
R→∞

� R

−R

dx

(x2 + 1)3

= lim
R→∞

(�
ΓR∪CR

1

(z2 + 1)3
dz −

�
CR

1

(z2 + 1)3
dz

)
=

3π

8
.
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(b)

� ∞
−∞

dx

x2 − 4x+ 5

Solution. We use the same contours as in the previous problem. Consider the function

f(z) =
1

z2 − 4z + 5
=

1

(z − 2− j)(z − 2 + j)
,

which is analytic everywhere except at the singularities z = 2± j.

Re

Im

R−R

jR

2 + j

2− j

CR

By choosing the function g(z) = 1
z−2+j , we use the Cauchy integral formula to see that

�
ΓR∪CR

1

z2 − 4z + 5
dz =

�
ΓR∪CR

g(z)

z − 2− j
dz = 2πj g(2 + j) = 2πj

1

2j
= π,

which holds for any R >
√

5. Note that
∣∣z2 − 4z + 5

∣∣ ≥ |z|2 − 4 |z| − 5 for any z ∈ C.
Thus, for any complex number z = Rejθ on a semicircular arc of radius R > 5, we have
|z| = R and ∣∣∣∣ 1

z2 − 4z + 5

∣∣∣∣ =
1

|z2 − 4z + 5|
≤ 1

|z|2 − 4 |z| − 5
=

1

R2 − 4R− 5
.

Thus, by the ML-theorem, it holds that∣∣∣∣�
CR

1

z2 − 4z + 5
dz

∣∣∣∣ ≤ πR

R2 − 4R− 5
,

where CR is the contour of the semicircular arc from R to −R going counterclockwise in
the upper half-plane. Moreover, we have that

lim
R→0

(�
CR

1

z2 − 4z + 5
dz

)
= 0 since lim

R→∞

πR

R2 − 4R− 5
= 0.

Finally, we compute the desired integral as

� ∞
−∞

dx

x2 − 4x+ 5
= lim
R→∞

� R

−R

dx

x2 − 4x+ 5

= lim
R→∞

(�
ΓR∪CR

1

z2 − 4z + 5
dz −

�
CR

1

z2 − 4z + 5
dz

)
= π.

(c)

� ∞
−∞

x2

(x2 + 1)(x2 + 2)
dx
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Solution. We use the same contours as in the parts (a) and (b). Consider the function

f(z) =
z2

(z2 + 1)(z2 + 2)
=

z2

(z − j)(z + j)(z −
√

2j)(z +
√

2j)
,

which is analytic everywhere except at the singularities z = ±j and z = ±
√

2j.

Re

Im

R−R

jR

j

−j

√
2j

−
√

2j

CR

Re

Im

R−R

jR

j

−j

√
2j

−
√

2j

CR

By the Residue Theorem, for any R >
√

2 we have that�
ΓR∪CR

z2

(z2 + 1)(z2 + 2)
dz = 2πj Res(f, j) + 2πj Res(f,

√
2j)

for any R >
√

2. Note that, for any z = Rejθ with R >
√

2, we have∣∣∣∣ z2

(z2 + 1)(z2 + 2)

∣∣∣∣ =
|z|2

|z2 + 1| |z2 + 2|
≤ |z|2

(|z|2 − 1)(|z|2 − 2)
=

R2

(R2 − 1)(R2 − 2)
.

Thus, by the ML-theorem, it holds that∣∣∣∣�
CR

z2

(z2 + 1)(z2 + 2)
dz

∣∣∣∣ ≤ πR3

(R2 − 1)(R2 − 2)
,

where CR is the contour of the semicircular arc from R to −R going counterclockwise in
the upper half-plane. Moreover, we have that

lim
R→∞

(�
CR

z2

(z2 + 1)(z2 + 2)
dz

)
= 0 since lim

R→∞

πR3

(R2 − 1)(R2 − 2)
= 0.

The singularities of f at z = j and z =
√

2j are poles of order 1. The desired residues can
therefore be computed as

Res(f, j) =
(j)2

(j + j)(j2 + 2)
=

−1

(2j)(−1 + 2)
=
j

2

and

Res(f,
√

2j) =
(
√

2j)2(
(
√

2j)2 + 1
) (√

2j +
√

2j
) =

−2

(−1)(2
√

2j)
= − j√

2

Finally, we compute the desired integral as� ∞
−∞

x2

(x2 + 1)(x2 + 2)
dx = lim

R→∞

� R

−R

x2

(x2 + 1)(x2 + 2)
dx

= lim
R→∞

(�
ΓR∪CR

z2

(z2 + 1)(z2 + 2)
dz −

�
CR

z2

(z2 + 1)(z2 + 2)
dz

)
= 2πj

(
Res(f, j) + Res(f,

√
2j)
)

= 2πj

(
j

2
− j√

2

)
= π(

√
2− 1)
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(d)

� ∞
−∞

1

x4 + a4
dx, where a > 0 is a constant.

Solution. We proceed as in the previous parts, noting that the associated |f(z)| behaves
as 1

R4 for large R, and thus the integral along the semicircular contour goes to zero as
R −→ ∞. We note that there are 4 roots to the equation z4 + a4 = 0 (i.e., there are four
solutions toz4 = −a4), which are z = a(−1)1/4. Writing −1 = ej(π+2kπ) for integers k ∈ Z,
we have the roots are located at

zk = aej(
π
4 +nπ2 )

for k = 0, 1, 2, 3, or

z0 = aejπ/4, z1 = aej3π/4, z2 = aej5π/4, z3 = aej7π/4.

Only the first two of these lie in the upper half plane. Since each singularity is a pole
order 1, and the integrand has the form f(z) = 1

z4+a4 , the residues are computed most
easily as

Res(f, zk) =
1

4z3
k

.

Evaluating the residue at z0 = aej
π
4 , we have

Res(f, z0) =
1

4a3ej3π/4
=
e−j3π/4

4a3
=

1

4a3

(
− 1√

2
− j 1√

2

)
.

At z1 = aej3π/4, we have

Res(f, z1) =
1

4a3ej9π/4
=
e−j9π/4

4a3
=
e−jπ/4

4a3
=

1

4a3

(
1√
2
− j 1√

2

)
.

The sum of the residues is thus

1

4a3

(
−j 2√

2

)
= −j 1

2
√

2a3
.

By the residue theorem, we have

� ∞
−∞

1

x4 + a4
dx = 2πj

(
−j 1

2
√

2
a3

)
=

π√
2a3

.

10. Let a be a positive real number (a > 0). For each R > 1, let ΓR be the part of the real axis from −R
to R and CR be the semicircular contour of radius R in the upper half plane going counterclockwise
(see the figure below) such that ΓR ∪ CR is a closed contour.

Re

Im

R−R

jR
CR

ΓR

11



(a) Evaluate the integral

�
ΓR∪CR

ejaz

z2 + 1
dz.

Solution. The integrand ejaz

z2+1 = ejaz

(z−j)(z+j) has poles of order 1 at z = ±j, only one of

which lies inside the simple closed contour ΓR ∪ CR.

Re

Im

R−R

jR

+j

−j

CR

ΓR

The residue of f(z) = ejaz

z2+1 at z = j is

Res(f, j) =
ejaj

j + j
= −j e

−a

2
.

Using residue theory, we can compute the desired integral as

�
ΓR∪CR

ejaz

z2 + 1
dz = 2πj Res(f, j) = 2πj

(
−j e

−a

2

)
= πe−a.

(b) Use the ML-estimation technique and your answer from part (a) to evaluate

� ∞
−∞

ejax

x2 + 1
dx.

Solution. Let CR denote the semicircular contour of radius R centered at the origin in the
upper half plane going counterclockwise from R to −R.

Re

Im

R−R

jR

CR

For points z = Rejθ with θ ∈ [0, π] on this contour, we have∣∣ejaz∣∣ =
∣∣∣ejaR(cos θ+j sin θ)

∣∣∣ = e−aR sin θ
∣∣ejaR cos θ

∣∣︸ ︷︷ ︸
=1

= e−aR sin θ ≤ 1

since sin θ ≥ 0 in the range θ ∈ [0, π] and thus −aR sin θ ≤ 0 such that e−aR sin θ ≤ 1.
Moreover, we have that ∣∣∣∣ ejazz2 + 1

∣∣∣∣ =

∣∣ejaz∣∣
|z2 + 1|

≤ 1

R2 − 1

12



for all points z = Rejθ with θ ∈ [0, π] on this contour. By the ML-theorem, we therefore
have that ∣∣∣∣�

CR

ejaz

z2 + 1
dz

∣∣∣∣ ≤ πR

R2 − 1
−→ 0

in the limit as R→∞. That follows that

lim
R→0

�
CR

ejaz

z2 + 1
dz = 0

ans thus the desired integral can be evaluated as

� ∞
−∞

ejax

x2 + 1
dx = lim

R→∞

� R

−R

ejax

x2 + 1
dx = πe−a −

(
lim
R→0

�
CR

ejaz

z2 + 1
dz

)
= πe−a.

(c) From the fact that Re
(
ejax

)
= cos ax, use your answer from part (b) to conclude that

� ∞
−∞

cos ax

x2 + 1
dx = πe−a

Solution.
� ∞
−∞

cos ax

x2 + 1
dx =

� ∞
−∞

Re(ejax)

x2 + 1
dx = Re

(� ∞
−∞

ejax

x2 + 1
dx

)
= Re

(
πe−a

)
= πe−a.

11. Use contour integration to evaluate

� 2π

0

cos(3θ)

5− 4 cos θ
dθ.

(We didn’t cover this in lecture, so you may ignore it.)

12. Show using contour integration that

� 2π

0

1

1− 2a cos θ + a2
dθ =

2π

1− a2
, where |a| < 1 is a constant.

(We didn’t cover this in lecture, so you may ignore it.)

13. Use contour integrals to compute the inverse Fourier transforms of the following.

(a) F (ω) =
1

ω2 − 3jω − 2

Solution. We may rewrite F (ω) as

F (ω) =
1

(ω − j)(ω − 2j)

and observe that this has two simple poles at z = j and z = 2j, both of which are located
in the upper half plane. Now we integrate

f(x) =
1

2π

� +∞

−∞

ejωx

(ω − j)(ω − 2j)
dω = lim

R→∞

1

2π

� +R

−R

ejωx

(ω − j)(ω − 2j)
dω.

There are two cases to consider: x > 0 and x < 0.

(i) When x > 0, we integrate around the semicircular contour on radus R in the upper
half-plane. To find the value of the integral, we only need to compute the residues

13



at the singularities in the upper half-plane. This is

f(x) = j

(
lim
ω→j

ejωx

ω − 2j
+ lim
ω→2j

ejωx

ω − j

)
= −e−x + e−2x.

(ii) When x < 0, we integrate along the semicircular contour on radus R in the lower
half-plane. But the integrand is analytic everywhere in the lower half-plane (as its
only singularities are at z = j and z = 2j). Thus f(x) = 0 for x < 0.

Putting together parts (i) and (ii), we can express it as

f(x) = (e−2x − e−x)H(x).

(b) F (ω) =
1

(2− jω)2

Solution. We may rewrite F (ω) as

F (ω) =
1

j2(−2j − ω)2
= − 1

(ω + 2j)2
,

which has a single pole at ω = −2j, which is of order 2, and lies in the lower half plane.
Now we integrate

f(x) = − 1

2π

� +∞

−∞

ejωx

(ω + 2j)2
dω = lim

R→∞
− 1

2π

� +R

−R

ejωx

(ω + 2j)2
dω.

Again, there are two cases to consider: x > 0 and x < 0.

(i) When x > 0, we integrate along the semicircular contour on radus R in the upper
half-plane, but the integrand is analytic everywhere in the upper half-plane (as its
only singularity is at z = −2j). Thus f(x) = 0 for x > 0.

(ii) When x < 0, we integrate along the semicircular contour on radus R in the lower
half-plane. For this integral, we only need the value of the reside computed at = −2j.
This is computed as

lim
ω→−2j

d

dω

(
−ejωx

)
= lim
ω→−2j

−jxejωx = −jxe2x

So, for x < 0, we have f(x) = 1
2π (−2πj)(−jxe2x) = −xe2x.

Putting together parts (i) and (ii), we can express it as

f(x) = −xe2xH(−x).
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