
ECE 206 – Fall 2019
Quiz 3

October 9, 2018 at 17:30
Instructor: Mark Girard
University of Waterloo

Notes:
1. Fill in your name (first and last) and student ID number.
2. This quiz contains 9 pages (including this cover page) and 4

problems. Check to see if any pages are missing.
3. Answer all questions in the space provided. Extra space is pro-

vided on the last page. If you want the overflow page marked,
be sure to clearly indicate that your solution continues.

4. Show all of your work on each problem.
5. Your grade will be influenced by how clearly you ex-

press your ideas, and how well you organize your solu-
tions.

6. You may not use your books, notes, calculator, or any other aids
on this quiz. The use of personal electronic or communication
devices is prohibited.

Problem Points

1 8

2 4

3 5

4 6

Total: 23



1. Consider a surface Σ = {Φ(u, v) |u ∈ (0, 1] and v ∈ [−π
2 ,

π
2 ]} determined by a parameterization

Φ(u, v) = (2u sin v, u cos v, u+ 1)

for all 0 < u ≤ 1 and −π
2 ≤ v ≤

π
2 .

(a)[2] Determine the normal vector nΦ(u, v) to the surface Σ.

Solution: The partial derivatives of the parameterization function with respect to u
and v are

∂Φ

∂u
= (2 sin v, cos v, 1) and

∂Φ

∂v
= (2u cos v, −u sin v, 0).

A normal vector at any point Φ(u, v) is therefore

nΦ(u, v) =
∂Φ

∂u
× ∂Φ

∂v
= (u sin(v), 2u cos(v), −2u) .

(b)[3] Determine an implicit representation for the tangent plane at the point r0 = (0, 1, 2) on the
surface Σ by describing the plane in terms of an equation of the form x+ y+ z = .

Solution: The point r0 is parameterized as r0 = Φ(1, 0),with u = 1 and v = 0. The
normal vector at this point is n = nΦ(1, 0) = (0, 2,−2). An equation for the plane
tangent to the surface at this point is therefore(

(x, y, z)− (0, 1, 2)
)
· n = 0.

As (0, 1, 2) · n = 2 − 4 = −2 and (x, y, z) · n = 2y − 2z, the desired equation for the
tangent plane is

2y − 2z = 2.

We may divide by 2 to obtain the simpler expression y− z = 1. An implicit represen-
tation for this surface is therefore {(x, y, z) : y − z = 1}.

(c)[3] Describe the four grid curves of Φ along u = 1, and along v = −π
2 , v = 0, and v = π

2 .
(You may include a sketch as part of your answer.)

Solution:

• The grid curve defined by Φ(1, v) = (2 sin v, sin v, 2) is the semi-ellipse that is
in the half-space y ≥ 0, is the plane defined by z = 2, is centered at the point
(0, 0, 2), and has semi-major axis length 2 in the x-direction and semi-minor axis
length 1 in the y-direction.

• The grid curve defined by Φ(u,−π
2 ) = (−2u, 0, u+1) is the straight line segment

connecting the point (0, 0, 1) to the point (−2, 0, 2).



• The grid curve defined by Φ(u, 0) = (0, u, u + 1) is the straight line segment
connecting the point (0, 0, 1) to the point (0, 1, 2).

• The grid curve defined by Φ(u, π2 ) = (2u, 0, u + 1) is the straight line segment
connecting the point (0, 0, 1) to the point (2, 0, 2).

The surface is half of an elliptical cone along the z-axis centered at (0, 0, 1). The
resulting surface and the grid curves are displayed below.



2.[4] Evaluate the double integral

¨
D
y2 dA where D ⊆ R2 is the region defined by 1 ≤ x2 + y2 ≤ 4.

Solution: Using polar coordinates, this region can be described by 1 ≤ r ≤ 2, where we
use the transformation x = r cos θ and y = r sin θ. The integral is therefore

¨
D
y2 dA =

ˆ 2π

0

ˆ 2

1
(r2 sin2 θ) (r) dr dθ

=

(ˆ 2

1
r3 dr

)(ˆ 2π

0
sin2 θ dθ

)
=
r4

4

∣∣∣∣2
r=1

(ˆ 2π

0

1− cos 2θ

2
dθ

)
=

(
4− 1

4

)[
θ

2
− 1

4
sin 2θ

]2π

θ=0

=
15

4
(π − 0) =

15π

4
.

3.[5] Let F : R3 → R3 be the vector field defined by F (x, y, z) = (x, y, xyz) and let Σ be the surface
given by z = x2 + y2 with z ∈ [0, 4]. Determine the flux of F downward through the surface
Σ.

Solution: The surface can be visualized as in the following diagram. The (downward)
normal vector is depicted at some points.

We first parameterize the surface by the parameteriza-
tion

Φ(u, v) = (u cos v, u sin v, u2)

for u ∈ [0, 2] and v ∈ [0, 2π]. We have that

∂Φ

∂u
= (cos v, sin v, 0) and

∂Φ

∂v
= (−u sin v, u cos v, 2u)

so that the normal vector at the point Φ(u, v) is given
by

nΦ =
∂Φ

∂u
× ∂Φ

∂v
= (−2u2 cos v,−2u2 sin v, u).

However, this vector points upward, since its z-
component is positive, so we must take the negative
of this vector as our normal to get the downward flux.



The field at each point on the surface is F (Φ(u, v)) = (u cos v, u sin v, u4 cos v sin v). More-
over, we have that

F (Φ(u, v)) · nΦ(u, v) = (u cos v, u sin v, u4 cos v sin v) · (2u2 cos v, 2u2 sin v,−u)

= 2u3(cos2 v + sin2 v)− u5 cos v sin v

= 2u3 − u5 cos v sin v.

The desired flux can therefore be computed as

¨
Σ
F · dA =

¨
Σ
F · dA =

¨
D
F (Φ(u, v)) · nΦ(u, v) du dv

=

ˆ 2π

0

ˆ 2

0
(2u3 − u5 cos v sin v) du dv

= (2π) 2
u4

4

∣∣∣∣2
u=0

= 24π = 16π,

where we note that

ˆ 2π

0
cos v sin v dv = 0.



4. Consider the surface Σ (oriented outwards) shown below. The boundary of Σ is the circle
x2 + y2 = 1 in the xy-plane (i.e., z = 0) oriented clockwise when viewed from above.

Σ

n


n


Let F : R3 → R3 and G : R3 → R3 be the vector fields defined by

F (x, y, z) = (yz, xz + x, z), and G(x, y, z) = (yexy, xexy, 0).

For each part, circle the best answer. Show your work to receive full credit. (Hint: Make use
of an important theorem and find a simpler surface with the same boundary.)

(a)[3] Evaluate the integral

¨
Σ

(∇× F ) · n̂ dA. −2π −π 0 π 2π

Solution: Use Stokes’ theorem to reduce the integral to a line integral over the bound-
ary ¨

Σ
(∇× F ) · n̂ dA =

˛
∂Σ

F · dr.

However, this integral can be further simplified. Consider now the surface S, which is
the unit disc in the xy-plane and is the ‘top’ of the region contained inside Σ, having
the same boundary as Σ. This surface (with clockwise boundary and normal oriented
downward) is visualized below:

n


Since Σ and S share a boundary (i.e., ∂Σ = ∂S), the desired integral becomes

¨
Σ

(∇× F ) · n̂ dA =

˛
∂Σ

F · dr =

˛
∂S

F · dr =

¨
S

(∇× F ) · n̂ dA.

The (downward) normal vector for S is n̂ = −k̂ and the curl of F is∇×F = (−x, y, 1).
Thus¨

S
(∇× F ) · n̂ dA = −

¨
S

(−x, y, 1) · k̂ dA. = −
¨
S

(1) dA = − area(S) = −π,

since the area of S is π.



(b)[3] Evaluate the integral

˛
∂Σ

G · dr. −2π − π 0 π 2π

Solution: Note that ∇×G = 0, so we may use Stokes’ Theorem to find that

˛
∂Σ

G · dr =

¨
Σ

(∇×G) · n̂ dA =

¨
Σ

0 dA = 0.



Trigonometric identities
sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

sin(A±B) = sinA cosB ± cosA sinB sin 2θ = 2 sin θ cos θ

cos(A±B) = cosA cosB ∓ sinA sinB cos 2θ = cos2 θ − sin2 θ

cos2 θ =
1 + cos 2θ

2

sin2 θ =
1− cos 2θ

2

Change of variable formula
If Φ(u, v) = (x(u, v), y(u, v)) is a one-to-one C1-transformation Φ : D → R2 then

¨
Φ(D)

f(x, y) dx dy =

¨
D
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
where the region Φ(D) = {Φ(u, v) | (u, v) ∈ D} is the region mapped to. The Jacobian is
defined as

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
.

Polar coordinates
For the coordinate transformation defined by x = r cos θ and y = r sin θ, the Jacobian is

∂(x, y)

∂(r, θ)
= r.

Vector calculus identities

∇× (fF ) = (∇f)× F + f(∇× F )

∇ · (fF ) = (∇f) · F + f(∇ · F )

∇× (∇f) = 0

∇ · (∇× F ) = 0

∇× (∇× F ) = ∇(∇ · F )−∇2F

where ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.



This space is for sketch work or overflow

(If you want something here marked, be sure to clearly indicate on the question page.)


