ECE 206 = Fall 2019
Quiz 4
November 6. 2018 at 173
Instructor: Mark Girard

University of Waterloo
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Fill in your name (first and last) and student 1D number.

This guiz contains 6 pages (including this cover page) and 3
problems. Check to see if any pages are missing.

Answer all questions in the space provided. Extra space is pro-
vided on the last page. If you want the overflow page marked.
be sure to clearly indicate that your solution continnes.

- Show all of vour work on each problem.
. Your grade will be influenced by how clearly vou ex-

press vour ideas, and how well you organize your solu-
tions.

. You may not use vour books, notes, calenlator, or any other aids

on this guiz. The use of personal electronic or communication
devices is prohibited.
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1 b
2 o
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Total: 20




Note: Maxwell's Equations can be found on the formmla sheet on the last page for reference.

[3] 1. Use Maxwell’s equations along with a vector caleulus identity for ¥V to show that in the case
of no currents or charges, B satifies the homopgeneous wave equation
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Suppose the magnetic vector potential is given by Al{r. y. z.{) = ayi — b’z j for some con-
stants a and b.

[31

[6]

(a) Determine the magnetic field from this magnetic vector potential

(b} Let I be the curve of the unit circle ° 4+ 4* = 1 on the ry-plane oriented counterclockwise
when viewed down the z-axis. Determine the value of

E . dr as a function of time.
r
{Hint: Use a theorem from vector caleulus, Maxwell's equations. and the B-field from part
(a).)
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[6] 3. Consider the set A C C of complex numbers defined by
T
=1z 2| <2 —w gt O
A {_Ech | <2 and —7 < Arg(z) < 2}

Sketch A, then find and sketch the image of A under the mapping f(z) = 2*.
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This space is for sketch work or overflow
(If you want something here marked, be sure to clearly indicate on the question page.)



Trigonometric identities
sin’ @+ cos 0 =1
tan” # 4+ 1 = sec”
sin{d + B} = sin Acos B £ cos Asin B gin 28 = 2 gin # cos §
cos( A + B) = cos Acos B F sin Asin B cos 28 = cos” # — sin®

coss § = —] +TE‘!E
2 T 1 — cos 2
&
Vector caleulus theorems
Suppose F is a C! vector field on BY.
Stolkes” Theorem 5& F-dr=ﬂ‘{?xF}-d5' for all surfaces © c B?
fi b M

Divergence Theorem # F-dE:ﬂfF-Fjd]-' for all regions 0! C B*
it L1

Vector caleulus identities

V % (fF) = (V) x F+ f(V x F)
VAfF)=(V[)-F+ (V- -F)

Yx(Vf)=0
Y- (¥=xFl=0D
?x{?xF}="F{?-Fj—?”F
P
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Maxwell’s equations
o. gL
£
a8
Y E=—"
i at
V-B=0

aE
VxB =HuEuE + pat



