Reference sheet

Trigonometric identities

$$\sin^2 \theta + \cos^2 \theta = 1 \qquad \tan^2 \theta + 1 = \sec^2 \theta$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \qquad \sin 2\theta = 2 \sin \theta \cos \theta$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \qquad \cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \qquad \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

Vector calculus theorems Suppose \mathbf{F} is a \mathbb{C}^1 vector field on \mathbb{R}^3 .

Stokes' Theorem
$$\oint_{\partial \Sigma} \boldsymbol{F} \cdot d\boldsymbol{r} = \iint_{\Sigma} (\nabla \times \boldsymbol{F}) \cdot d\boldsymbol{S} \quad \text{for all surfaces } \Sigma \subset \mathbb{R}^3$$
 Divergence Theorem
$$\oint_{\partial \Omega} \boldsymbol{F} \cdot d\boldsymbol{S} = \iiint_{\Omega} (\nabla \cdot \boldsymbol{F}) \, dV \quad \text{for all regions } \Omega \subset \mathbb{R}^3$$

Vector calculus identities

$$\nabla \times (f\mathbf{F}) = (\nabla f) \times \mathbf{F} + f(\nabla \times \mathbf{F})$$

$$\nabla \cdot (f\mathbf{F}) = (\nabla f) \cdot \mathbf{F} + f(\nabla \cdot \mathbf{F})$$

$$\nabla \times (\nabla f) = \mathbf{0}$$

$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$

$$\nabla \times (\nabla \times \mathbf{F}) = \nabla \nabla \cdot (\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F}$$

where
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
.

Maxwell's equations

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{B} = \mu_0 \epsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} + \mu_0 \boldsymbol{J}$$

Complex trigonometric and hyperbolic identities For all complex numbers $z \in \mathbb{C}$:

$$\cos z = \frac{e^{jz} + e^{-jz}}{2} \qquad \sin z = \frac{e^{jz} - e^{-jz}}{2j} \qquad \cosh z = \frac{e^z + e^{-z}}{2} \qquad \sinh z = \frac{e^z - e^{-z}}{2}$$
$$\cos jz = \cosh z \qquad \sin jz = j \sinh z$$

Cauchy-Riemann equations .

In Cartesian form

$$u_x = v_y u_y = -v_x$$

and if f is differentiable the derivative is given by $f'(x+jy) = u_x(x,y) + jv_x(x,y)$. In polar form

$$u_r = -\frac{1}{r}v_\theta \qquad v_r = -\frac{1}{r}u_\theta \quad .$$

and if f is differentiable the derivative is given by $f'(re^{j\theta}) = e^{-j\theta} (u_r(r,\theta) + jv_r(r,\theta))$.

Generalized Cauchy integral formula Suppose f is analytic everywhere in a simply connected region D. For any integer $n \geq 0$,

$$\oint_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi j}{n!} f^{(n)}(z_0)$$

where Γ is any simple closed contour going counterclockwise around the point z_0 in D.

Useful Taylor series

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^{n}$$