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Name:
Problem | Points | Score
Notes: 1 11
1. Fill in your name (first and last) and student ID number in the space
above. 9 9
2. This midterm contains 10 pages (including this cover page) and 6
problems. Check to see if any pages are missing. 3 9
3. Answer all questions in the space provided. Extra space is provided
at the end. If you want the overflow page marked, be sure to clearly 4 9
indicate that your solution continues.
4. Show all of your work on each problem. 5 3
5. Your grade will be influenced by how clearly you express
your ideas, and how well you organize your solutions. 6 4
Total: 45




1. Consider the region € in R? that is above the surface z? + y? — z = 4 and below the zy-plane. Also
consider the vector field F(z,y,z) = (0,0, z).

2] (a) Circle the the correct visualization of {2 below.
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[7] (b) Use a surface integral to directly compute the flux of F through the entire surface 9€2, with respect
to the outward pointing normals.
2] (c) Use the Divergence Theorem and your answer in (b) to determine the volume of 2.
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2. Consider the region D,, (depicted below) that is bound by the curves y = %x, y=14++/2—2z, and
y=2(1—-+/1—2x), and let ® be the transformation defined by

O(u,v) = (x(u, v), y(u, v)) = (2u — 0% u+ v)
that transforms a region D, into Dy,.

2] (a) Identify the region D, that is mapped to the region D, under the transformation ®.
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(b) Determine the Jacobian of the transformation ®.

(c) Let F : R2 — R2 be the vector field defined by F(z,y) = (y2 + «, 3zy). Compute the circulation
of F' around the boundary of D,, oriented counterclockwise.
(Hint: Use a theorem to set up and evaluate a double integral over the region D,,.)
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3. Consider the two vector fields F': R3 — R3 and G : R? — R? defined by

5] (a) One of the two vector fields is conservative and the other is not. Determine which one is conser-
vative and find a scalar potential. For the non-conservative field, show that it is not conservative.
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4] (b) Let T be the part of the curve y = 2 on the plane z = 0 from z = 0 to = 1. Evaluate the line
integrals / F . df and / G - d7. (Hint: only one integral must be evaluated directly.)
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4. Let the region Q (depicted below) be the part of the interior sphere 22 + y? 4+ 22 = 1 in the quadrant
x,y,z > 0. Suppose the electric field E in the region € is given by E(z,y,2) = (y—xz)i+2%2 5+ 2% k.
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2] (a) Determine the divergence of E.
5] (b) Use Gauss’ law to determine the total amount of charge contained in €.
2] (c) Let S be the part of the boundary of €2 that lines on the zy-plane (i.e. z = 0). What is the electric

flux through S7 Explain.
bwer&,q_n e

_ {
(b\ Dend = 5°Z)%;E'\:‘°U\ = gong‘E_JV zé\eﬁfﬂzé\/

Switdn ko S?\\erwt/oa_sv coor’é&(\a\—&‘s‘. Z=peos P
z 2% l

} Effj (peos H(P*sinp) dp do d

o o

= &@N/l&e\(f cespsing 49) Ll * dp)

(B [3eta 2] (4,

Theore

- & I (. 2
- o (5'\'\1{ *Stnzo§
:I{bI

lo

z
) a_n
onk Nomal oS 0s Ro= -k ‘—(O,Q} -1)
f——on S 3

gj("/‘d) C73 = L«d}0,0\

X % (=2 L& 5 MbLe, \-\f\a\sf E‘J ond & e
A 2=0, ><‘+% e\, %,azo\ - \
= n

O’\*\*‘—‘ac\hu\ (

on ol o8 S s

HSE%AA <0




[3] 5. Suppose a C ! vector field F' : R3 — R3 satisfies V- F = 0 everywhere. Let S; and S9 be two surfaces
in R3 that share the boundary curve I' = 9S; = 055. Show that the flux of F' is independent of the

surface chosen (S or S2).

(Your solution should reference an important theorem.)
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6. Suppose F' is a radial vector field of the form F(7) = f(r)¥, where f is an arbitrary function, 7 =

(z,y,2), and r = ||7]| = /22 + y2 + 22.

4] (a) Expand out V- F and show that V- F = 0 only if f satisfies a certain differential equation. (Your
differential equation should be only in terms of r, and not z,y, z.)
[2 bonus] (b) Extra Credit: Solve the separable differential equation from part (a) to find the form of f(r)

that satisfies V- F = 0.
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Trigonometric identities

sin® 0 + cos® 0 = 1
tan?6 4+ 1 = sec?§
sin(A + B) = sin Acos B =+ cos Asin B sin 26 = 2sinf cos
cos(A + B) = cos Acos B F sin Asin B cos 20 = cos* # — sin? @

cos2 ) — 1+ cos26
2

1 —cos26

sin20 = %

Change of variable formula If ®(u,v) = (z(u,v), y(u,v)) is a transformation then

J[ s narar= [[ sat0.v0m0) 502 aa

where the region D,, is mapped to Dy, under ®. The Jacobian is defined as
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The Jacobian satisfies the following property: (u,v) =
8(3;7 y) O(z,y)
O(u,v)
3 o — Ny — s . : a(l‘a y)
e Polar coordinates: x = rcosf and y = rsinf. The Jacobian is a(r. )
T?
A : : . 02,y 2)
e Cylindrical coordinates: z = rcosf, y = rsinf, z = z. The Jacobian is m =r
r, 6, z
e Spherical coordinates: = = psingcosf, y = psinesing, z = pcosyp. The Jacobian is

8(x7y7 Z) — p2 Sln(p
A(p,0,)

Vector calculus identities

Vx (fF)=(Vf)x F+ f(VxF)
V-(fF)=(Vf)-F+ f(V-F)
Vx(Vf) =0
V- (VXF)=0
Vx(VxF)=V(V-F)-VF

2 _ 02 9?2 9?2
WhereV _W+a_y2+@

Conservative and solenoidal vector fields. Let F be a C! vector field.

e If it holds that V x F' = 0 everywhere, then there is a scalar field ¥ such that V¥ = F.
e Ifit holds that V- F =0 everywhere, then there is a vector field A such that V x A = F'.
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