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Note. The floor function takes a real number x as input and outputs the greatest integer ⌊x⌋ that is
less than or equal to x. For example,

⌊1.2⌋ = 1, ⌊π⌋ = 3, ⌊7⌋ = 7, ⌊−1.3⌋ = −2, and
⌊

1
2

⌋
= 0.

For most of the following problems, use induction unless otherwise stated.

1. Prove for all numbers n ∈ N that

⌊n/2⌋

∑
j=0

(
n
2j

)
= 2n−1.

(Note: Induction will not be helpful here. Try out a few small values of n to see if you find a
pattern and use Binomial Theorem instead.)

Solution. First, let’s try expanding out the sum in question for a few small values of
n to see what it looks like. For each n ∈ N, define s(n) to be the sum in question.

• When n = 1, we have ⌊1/2⌋ = 0 and

s(1) =
0

∑
j=0

(
1
2j

)
=

(
1
0

)
= 1 = 20

.

• When n = 4, we have ⌊4/2⌋ = 2 and

s(4) =
2

∑
j=0

(
4
2j

)
=

(
4
0

)
+

(
4
2

)
+

(
4
4

)
= 1 + 6 + 1 = 8 = 23

.

• When n = 7, we have ⌊7/2⌋ = 3 and

s(7) =
3

∑
j=0

(
7
2j

)
=

(
7
0

)
+

(
7
2

)
+

(
7
4

)
+

(
7
6

)
= 1 + 21 + 35 + 7 = 64 = 26

.
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We see that s(n) is the sum of all (n
m) where m is an even integer. Another way to write

this sum is as

s(n) =
n

∑
m=0

m is even

(
n
m

)
=

(
n
0

)
+

(
n
2

)
+ · · ·+

(
n

2⌊n/2⌋

)

where we sum only over the even integers between 0 and n. Now, let’s explore what
happens when we use the Binomial Theorem to expand the sums of (1 + 1)n and
(1 − 1)n. For example, note that

24 = (1 + 1)4 =
4

∑
m=0

(
n
4

)
=

(
4
0

)
+

(
4
1

)
+

(
4
2

)
+

(
4
3

)
+

(
4
4

)
and

0 = (1 − 1)4 =
4

∑
m=0

(
n
4

)
(−1)m =

(
4
0

)
−
(

4
1

)
+

(
4
2

)
−
(

4
3

)
+

(
4
4

)
.

If we add these two equalities together, we find

24 + 0 = 2
(

4
0

)
+ 2
(

4
2

)
+ 2
(

4
4

)
(where the binomial coefficients with odd lower indices are cancelled out). Dividing
by two yields the result

23 =

(
4
0

)
+

(
4
2

)
+

(
4
4

)
.

To prove the claim, we can follow this pattern for arbitrary n.

Proof. Let n ∈ N be arbitrary. By the Binomial Theorem, we have that

2n = (1 + 1)n =
n

∑
m=0

(
n
m

)
where we can split the summands of the sum on the right into even and odd indices
as

2n =
n

∑
m=0

m is even

(
n
m

)
+

n

∑
m=0

m is odd

(
n
m

)
(∗)

= s(n) + t(n)

where we define

s(n) =
n

∑
m=0

m is even

(
n
m

)
and t(n) =

n

∑
m=0

m is odd

(
n
m

)
.
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Similarly, by the Binomial Theorem, we have

0 = 0n = (1 + (−1))n =
n

∑
m=0

(
n
m

)
(−1)m.

Because (−1)m = 1 when m is even and (−1)m = −1 when m is odd, this becomes

0 =

(
m
0

)
−
(

m
1

)
+

(
m
2

)
− · · ·+ (−1)m

(
m
m

)
=

n

∑
m=0

m is even

(
n
m

)
−

n

∑
m=0

m is odd

(
n
m

)
(∗∗)

= s(n)− t(n).

Adding together the equalities in (∗) and (∗∗) yields

2n = 2s(n)

and dividing by 2 yields the desired result.

2. Prove for all n ∈ N that
n

∑
j=1

1
j(j + 1)

=
n

n + 1
.

Solution.

Proof. For each n ∈ N, let P(n) be the statement that ∑n
j=1

1
j(j+1) =

n
n+1 . We will prove

that P(n) holds for all n ∈ N by induction.

• Base case: When n = 1, we have

1

∑
j=1

1
j(j + 1)

=
1
2
=

1
1 + 1

and thus P(1) is true.

• Induction step: Let k ∈ N be arbitrary and suppose that P(k) is true. That is,
suppose that

k

∑
j=1

1
j(j + 1)

=
k

k + 1
. (Induction Hypothesis)
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Now

k+1

∑
j=1

1
j(j + 1)

=
k

∑
j=1

1
j(j + 1)

+
1

(k + 1)(k + 2)

=
k

k + 1
+

1
(k + 1)(k + 2)

by IH

=
1

k + 1

(
k +

1
k + 2

)
=

k2 + 2k + 1
(k + 1)(k + 2)

=
k + 1
k + 2

and thus P(k + 1) is true.

By the principle of mathematical induction, we conclude that P(n) is true for all n ∈
N.

3. Prove for all natural numbers n ≥ 2 that

√
n <

n

∑
k=1

1√
k

Solution.

Proof. For each n ∈ N let P(n) be the statement that
√

n < ∑n
k=1

1√
k
. We will prove

that P(n) is true for all n ≥ 2 by induction.

• Base case: Note that
√

2 < 2 and thus

√
2 =

√
2 +

√
2

2
<

2 +
√

2
2

= 1 +
1√
2
=

2

∑
k=1

1√
k

,

so P(2) is true.

• Induction step: Let m ∈ N be arbitrary such that m ≥ 2 and suppose that P(m)
is true. That is, suppose that

√
m <

m

∑
k=1

1√
k

(IH)

Now, by the induction hypothesis,

m+1

∑
k=1

1√
k
=

m

∑
k=1

1√
k
+

1√
m + 1

>
√

m +
1√

m + 1
.

4



It remains to prove that

√
m +

1√
m + 1

>
√

m + 1.

Now,
√

m + 1 >
√

m and thus
√

m + 1
√

m > m,

as m > 0. Adding 1 to both sides yields
√

m + 1
√

m + 1 > m + 1

and dividing both sides by
√

m + 1 yields

√
m +

1√
m + 1

>
√

m + 1.

It follows that P(m + 1) holds.

By the principle of mathematical induction, we conclude that P(n) is true for all nat-
ural numbers n ≥ 2.

4. Consider a sequence defined by a1 =
√

2 and

an+1 =
√

2 + an

for all n ∈ N. Prove that
√

2 ≤ an < 2 for all n ∈ N

Solution.

Proof. Let P(n) be the statement that
√

2 ≤ an < 2. We will prove that P(n) is true for
all n ∈ N by induction.

• Base case: Note that a1 =
√

2 and
√

2 ≤
√

2 < 2, so P(1) is true.

• Induction step: Let k ∈ N be arbitrary and suppose that P(k) is true. That is,
suppose that √

2 ≤ ak < 2. (IH)

Now ak+1 =
√

2 + ak. It follows from the induction hypothesis that√
2 +

√
2 ≤

√
2 + ak <

√
2 + 2

and thus √
2 <

√
2 +

√
2 ≤ ak+1 <

√
4 = 2,

which proves that P(k + 1) holds.

It follows from the Principle of Mathematical Induction that
√

2 ≤ an < 2 holds for
every n ∈ N.
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5. Let r ∈ R be a real number such that r + 1
r is an integer. Prove that rn + 1

rn is an integer for
all n ∈ N.

Solution.

Proof. Let r ∈ R and suppose that r + 1
r is an integer. For each n ∈ N let P(r, n) be the

statement “rn + 1
rn is an integer”. We will prove that P(r, n) is true for all n ∈ N by

strong induction.

• Base case: Note that r1 + 1
r1 = r + 1

r , which is an integer by assumption. Thus
P(r, 1) is true.

• Induction step: Let k ∈ N be arbitrary and suppose that P(r, 1), P(r, 2), . . . , and
P(r, k) are all true. That is, suppose that

rm +
1

rm is an integer for each m ∈ {1, 2, . . . , k}. (IH)

Now, (
rk +

1
rk

)(
r +

1
r

)
= r · rk + r

1
rk +

1
r

rk +
1
r

1
rk

= rk+1 +
1

rk+1 + rk−1 +
1

rk−1 .

It follows that

rk+1 +
1

rk+1 =

(
rk +

1
rk

)(
r +

1
r

)
−
(

rk−1 +
1

rk−1

)
,

where rk + 1
rk , rk−1 + 1

rk−1 , and r + 1
r are integers by the induction hypothesis. It

follows that rk+1 + 1
rk+1 is an integer and thus P(r, k + 1) is true.

By the Principle of Strong Induction, it follows that P(r, n) is true for every n ∈ N.

6. Consider a sequence y1, y2, . . . defined by y1 = 1 and

yn = 2 · y⌊ n
2 ⌋

for all n ≥ 2. Prove that yn ≤ n for every n ∈ N.

Solution.

Proof. Let P(n) be the statement that yn ≤ n. We will prove that P(n) is true for all
n ∈ N by strong induction.

• Base case: Note that y1 = 1 and thus y1 ≤ 1, so P(1) is true.

• Induction step: Let k ∈ N be arbitrary. Suppose that, for every m ∈ {1, 2, . . . k},
P(m) is true. That is, suppose that ym ≤ m holds whenever 1 ≤ m ≤ k (IH).
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Note that k ≥ 1 and thus k + 1 ≥ 2, so k+1
2 ≥ 1. Hence

1 ≤
⌊

k + 1
2

⌋
≤ k + 1

2
< k + 1

and thus ⌊ k+1
2 ⌋ is an integer between 1 and k. It follows from the induction

hypothesis that

y⌊ k+1
2 ⌋ ≤

⌊
k + 1

2

⌋
≤ k + 1

2
.

Now
yk+1 = 2y⌊ k+1

2 ⌋ ≤ 2
k + 1

2
= k + 1

and thus yk+1 ≤ k + 1, which proves that P(k + 1) holds.

It follows from the Principle of Strong Induction that yn ≤ n for every n ∈ N.

7. The Fibonacci sequence f1, f2, . . . is defined by f1 = 1, f2 = 1, and

fn = fn−1 + fn−2

for all n ≥ 3. Prove the following facts about the Fibonacci sequence.

(a) For all n ≥ 2, it holds that fn <
( 7

4

)n−1.

Solution.

Proof. We will prove that fn <
( 7

4

)n−1 holds for all n ∈ N by strong induction.

• Base case: Note that f2 = 1 < 7
4 =

( 7
4

)1. Also,

f3 = 2 =
32
16

<
49
16

=

(
7
4

)2

.

Thus we have shown that fn ≤ ( 7
4 )

n−1 holds when n = 2 and when n = 3.

• Induction step: Let k be an integer such that k ≥ 3 and suppose that fm ≤
( 7

4 )
m holds for every m ∈ {1, 2, . . . k} (IH). By the induction hypothesis, it

holds that

fk <

(
7
4

)k

and fk−1 <

(
7
4

)k−1

.
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Now,

fk+1 = fk + fk+1

<

(
7
4

)k−1

+

(
7
4

)k−2

=

(
7
4

)k−2 (7
4
+ 1
)

=

(
7
4

)k−2 11
4

=

(
7
4

)k−2 44
16

<

(
7
4

)k−2 49
16

=

(
7
4

)k−2 (7
4

)2

and thus fk+1 <
( 7

4

)k.

It follows from the Principle of Strong Induction that fn <
( 7

4

)n−1 for all n ≥
2.

(b) For all n ∈ N, it holds that
n

∑
j=1

f j = fn+2 − 1.

Solution.

Proof. We proceed by induction.

• Base case: Note that f1 = 1, f2 = 1, f3 = 2, and f4 = 3. Hence

1

∑
j=1

f j = f1 = 1 = 2 − 1 = f3 − 1

and
2

∑
j=1

f j = f1 + f2 = 1 + 1 = 3 − 1 = f4 − 1.

• Induction step: Let k be an integer such that k ≥ 2 and suppose that

k

∑
j=1

f j = fk+2 − 1. (IH)
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Now fk+3 = fk+1 + fk+2 by the definition of the Fibonacci sequence, thus

k+1

∑
j=1

f j =
k

∑
j=1

f j + fk+1

= ( fk+2 − 1) + fk+1 by IH
= fk+1 + fk+2 − 1
= fk+3 − 1.

Hence
k+1

∑
j=1

f j = f(k+1)+2 − 1.

It follows from the Principle of Mathematical Induction that
n

∑
j=1

f j = fn+2 − 1

holds for all n ∈ N.

(c) For all n ∈ N, it holds that
n

∑
j=1

f 2
j = fn fn+1.

Solution.

Proof. We proceed by induction.

• Base case: Note that f1 = 1, f2 = 1, and f3 = 2. Hence

1

∑
j=1

f 2
j = f 2

1 = 12 = 1 · 1 = f1 f2

and
2

∑
j=1

f 2
j = f 2

1 + f 2
2 = 12 + 12 = 2 = 1 · 2 = f2 f3.

• Induction step: Let k be an integer such that k ≥ 2 and suppose that

k

∑
j=1

f 2
j = fk fk+1. (IH)

Note that fk+2 = fk + fk+1 by the definition of the Fibonacci sequence and
thus

k+1

∑
j=1

f 2
j =

k

∑
j=1

f 2
j + f 2

k+1

= fk fk+1 + f 2
k+1 by IH

= fk+1( fk + fk+1)

= fk+1 fk+2.
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Hence
k+1

∑
j=1

f j = fk+1 f(k+1)+1.

It follows from the Principle of Mathematical Induction that
n

∑
j=1

f 2
j = fn fn+1

holds for all n ∈ N.

(d) Let a = 1+
√

5
2 and b = 1−

√
5

2 . It holds that fn = an−bn
√

5
for all n ∈ N

Solution.

Proof. We proceed by strong induction. First note that

a2 =

(
1 +

√
5

2

)2

=
1 + 2

√
5 + 5

4
=

6 + 2
√

5
4

=
3 +

√
5

2
= 1 +

1 +
√

5
2

= 1 + a.

Similarly,

b2 =

(
1 −

√
5

2

)2

=
1 − 2

√
5 + 5

4
=

6 − 2
√

5
4

=
3 −

√
5

2
= 1 +

1 −
√

5
2

= 1 + b.

Hence 1 + a = a2 and 1 + b = b2.

• Base case: Note that

a − b√
5

=
1+

√
5

2 − 1−
√

5
2√

5
=

√
5

2 +
√

5
2√

5
= 1 = f1

and using the facts that 1 + a = a2 and 1 + b = b2 note that

a2 − b2
√

5
=

1 + a − (1 + b)√
5

=
a − b√

5
= 1 = f2.

• Induction step: Let k ≥ 2 and suppose that

fm =
am − bm
√

5
(IH)
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holds for every m ∈ {1, 2, . . . , k}. Now

fk+1 = fk + fk−1

=
ak − bk
√

5
+

ak−1 − bk−1
√

5
by IH

=
ak−1(a + 1)− bk−1(b + 1)√

5

=
ak−1a2 − bk−1b2

√
5

because 1 + a = a2 and 1 + b = b2

=
ak+1 − bk+1

√
5

.

It follows from the Principle of Mathematical Induction that fn = an−bn
√

5
holds for all

n ∈ N.
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