MATH 135 — Fall 2021 Practice Problems (Solutions)– Chapter 4

Mark Girard

October 15, 2021

Note. The *floor function* takes a real number *x* as input and outputs the greatest integer $\lfloor x \rfloor$ that is less than or equal to *x*. For example,

$$\lfloor 1.2 \rfloor = 1, \qquad \lfloor \pi \rfloor = 3, \qquad \lfloor 7 \rfloor = 7, \qquad \lfloor -1.3 \rfloor = -2, \qquad \text{and} \qquad \left\lfloor \frac{1}{2} \right\rfloor = 0.$$

For most of the following problems, use induction unless otherwise stated.

1. Prove for all numbers $n \in \mathbb{N}$ that

.

$$\sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} = 2^{n-1}.$$

(Note: Induction will not be helpful here. Try out a few small values of *n* to see if you find a pattern and use Binomial Theorem instead.)

Solution. First, let's try expanding out the sum in question for a few small values of n to see what it looks like. For each $n \in \mathbb{N}$, define s(n) to be the sum in question.

• When n = 1, we have |1/2| = 0 and

$$s(1) = \sum_{j=0}^{0} {1 \choose 2j} = {1 \choose 0} = 1 = 2^{0}$$

• When n = 4, we have |4/2| = 2 and

$$s(4) = \sum_{j=0}^{2} \binom{4}{2j} = \binom{4}{0} + \binom{4}{2} + \binom{4}{4} = 1 + 6 + 1 = 8 = 2^{3}$$

• When
$$n = 7$$
, we have $\lfloor 7/2 \rfloor = 3$ and

$$s(7) = \sum_{j=0}^{3} \binom{7}{2j} = \binom{7}{0} + \binom{7}{2} + \binom{7}{4} + \binom{7}{6} = 1 + 21 + 35 + 7 = 64 = 2^{6}$$

We see that s(n) is the sum of all $\binom{n}{m}$ where *m* is an even integer. Another way to write this sum is as

$$s(n) = \sum_{\substack{m=0\\m \text{ is even}}}^n \binom{n}{m} = \binom{n}{0} + \binom{n}{2} + \dots + \binom{n}{2\lfloor n/2 \rfloor}$$

where we sum only over the even integers between 0 and *n*. Now, let's explore what happens when we use the Binomial Theorem to expand the sums of $(1 + 1)^n$ and $(1 - 1)^n$. For example, note that

$$2^{4} = (1+1)^{4} = \sum_{m=0}^{4} \binom{n}{4} = \binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4}$$

and

$$0 = (1-1)^4 = \sum_{m=0}^4 \binom{n}{4} (-1)^m = \binom{4}{0} - \binom{4}{1} + \binom{4}{2} - \binom{4}{3} + \binom{4}{4}$$

If we add these two equalities together, we find

$$2^{4} + 0 = 2\binom{4}{0} + 2\binom{4}{2} + 2\binom{4}{4}$$

(where the binomial coefficients with odd lower indices are cancelled out). Dividing by two yields the result

$$2^3 = \begin{pmatrix} 4\\0 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} + \begin{pmatrix} 4\\4 \end{pmatrix}$$

To prove the claim, we can follow this pattern for arbitrary *n*.

Proof. Let $n \in \mathbb{N}$ be arbitrary. By the Binomial Theorem, we have that

$$2^{n} = (1+1)^{n} = \sum_{m=0}^{n} \binom{n}{m}$$

where we can split the summands of the sum on the right into even and odd indices as

$$2^{n} = \sum_{\substack{m=0\\m \text{ is even}}}^{n} \binom{n}{m} + \sum_{\substack{m=0\\m \text{ is odd}}}^{n} \binom{n}{m}$$
(*)
= $s(n) + t(n)$

where we define

$$s(n) = \sum_{\substack{m=0\\m \text{ is even}}}^{n} \binom{n}{m}$$
 and $t(n) = \sum_{\substack{m=0\\m \text{ is odd}}}^{n} \binom{n}{m}$.

Similarly, by the Binomial Theorem, we have

$$0 = 0^{n} = (1 + (-1))^{n} = \sum_{m=0}^{n} \binom{n}{m} (-1)^{m}.$$

Because $(-1)^m = 1$ when *m* is even and $(-1)^m = -1$ when *m* is odd, this becomes

$$0 = \binom{m}{0} - \binom{m}{1} + \binom{m}{2} - \dots + (-1)^m \binom{m}{m}$$
$$= \sum_{\substack{m=0\\m \text{ is even}}}^n \binom{n}{m} - \sum_{\substack{m=0\\m \text{ is odd}}}^n \binom{n}{m} \qquad (**)$$
$$= s(n) - t(n).$$

Adding together the equalities in (*) and (**) yields

$$2^n = 2s(n)$$

and dividing by 2 yields the desired result.

2. Prove for all $n \in \mathbb{N}$ that

$$\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}.$$

Solution.

Proof. For each $n \in \mathbb{N}$, let P(n) be the statement that $\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}$. We will prove that P(n) holds for all $n \in \mathbb{N}$ by induction.

• <u>Base case:</u> When n = 1, we have

$$\sum_{j=1}^{1} \frac{1}{j(j+1)} = \frac{1}{2} = \frac{1}{1+1}$$

and thus P(1) is true.

• <u>Induction step</u>: Let $k \in \mathbb{N}$ be arbitrary and suppose that P(k) is true. That is, suppose that

$$\sum_{j=1}^{k} \frac{1}{j(j+1)} = \frac{k}{k+1}.$$
 (Induction Hypothesis)

Now

$$\sum_{j=1}^{k+1} \frac{1}{j(j+1)} = \sum_{j=1}^{k} \frac{1}{j(j+1)} + \frac{1}{(k+1)(k+2)}$$
$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
by IH
$$= \frac{1}{k+1} \left(k + \frac{1}{k+2}\right)$$
$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$
$$= \frac{k+1}{k+2}$$

and thus P(k+1) is true.

By the principle of mathematical induction, we conclude that P(n) is true for all $n \in \mathbb{N}$.

3. Prove for all natural numbers $n \ge 2$ that

$$\sqrt{n} < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

Solution.

Proof. For each $n \in \mathbb{N}$ let P(n) be the statement that $\sqrt{n} < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$. We will prove that P(n) is true for all $n \ge 2$ by induction.

• <u>Base case</u>: Note that $\sqrt{2} < 2$ and thus

$$\sqrt{2} = \frac{\sqrt{2} + \sqrt{2}}{2} < \frac{2 + \sqrt{2}}{2} = 1 + \frac{1}{\sqrt{2}} = \sum_{k=1}^{2} \frac{1}{\sqrt{k}},$$

so P(2) is true.

• <u>Induction step</u>: Let $m \in \mathbb{N}$ be arbitrary such that $m \ge 2$ and suppose that P(m) is true. That is, suppose that

$$\sqrt{m} < \sum_{k=1}^{m} \frac{1}{\sqrt{k}} \tag{IH}$$

Now, by the induction hypothesis,

$$\sum_{k=1}^{m+1} \frac{1}{\sqrt{k}} = \sum_{k=1}^{m} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{m+1}} > \sqrt{m} + \frac{1}{\sqrt{m+1}}$$

It remains to prove that

$$\sqrt{m} + \frac{1}{\sqrt{m+1}} > \sqrt{m+1}.$$

Now, $\sqrt{m+1} > \sqrt{m}$ and thus

$$\sqrt{m+1}\sqrt{m} > m,$$

as m > 0. Adding 1 to both sides yields

$$\sqrt{m+1}\sqrt{m} + 1 > m+1$$

and dividing both sides by $\sqrt{m+1}$ yields

$$\sqrt{m} + \frac{1}{\sqrt{m+1}} > \sqrt{m+1}.$$

It follows that P(m + 1) holds.

By the principle of mathematical induction, we conclude that P(n) is true for all natural numbers $n \ge 2$.

4. Consider a sequence defined by $a_1 = \sqrt{2}$ and

$$a_{n+1} = \sqrt{2 + a_n}$$

for all $n \in \mathbb{N}$. Prove that $\sqrt{2} \le a_n < 2$ for all $n \in \mathbb{N}$

Solution.

Proof. Let P(n) be the statement that $\sqrt{2} \le a_n < 2$. We will prove that P(n) is true for all $n \in \mathbb{N}$ by induction.

- <u>Base case</u>: Note that $a_1 = \sqrt{2}$ and $\sqrt{2} \le \sqrt{2} < 2$, so P(1) is true.
- <u>Induction step</u>: Let $k \in \mathbb{N}$ be arbitrary and suppose that P(k) is true. That is, suppose that

$$\sqrt{2} \le a_k < 2. \tag{IH}$$

Now $a_{k+1} = \sqrt{2 + a_k}$. It follows from the induction hypothesis that

$$\sqrt{2+\sqrt{2}} \le \sqrt{2+a_k} < \sqrt{2+2}$$

and thus

$$\sqrt{2} < \sqrt{2} + \sqrt{2} \le a_{k+1} < \sqrt{4} = 2$$

which proves that P(k+1) holds.

It follows from the Principle of Mathematical Induction that $\sqrt{2} \le a_n < 2$ holds for every $n \in \mathbb{N}$.

5. Let $r \in \mathbb{R}$ be a real number such that $r + \frac{1}{r}$ is an integer. Prove that $r^n + \frac{1}{r^n}$ is an integer for all $n \in \mathbb{N}$.

Solution.

Proof. Let $r \in \mathbb{R}$ and suppose that $r + \frac{1}{r}$ is an integer. For each $n \in \mathbb{N}$ let P(r, n) be the statement " $r^n + \frac{1}{r^n}$ is an integer". We will prove that P(r, n) is true for all $n \in \mathbb{N}$ by strong induction.

- <u>Base case</u>: Note that $r^1 + \frac{1}{r^1} = r + \frac{1}{r}$, which is an integer by assumption. Thus P(r, 1) is true.
- <u>Induction step</u>: Let $k \in \mathbb{N}$ be arbitrary and suppose that $P(r, 1), P(r, 2), \ldots$, and P(r, k) are all true. That is, suppose that

$$r^m + \frac{1}{r^m}$$
 is an integer for each $m \in \{1, 2, \dots, k\}$. (IH)

Now,

$$\left(r^k + \frac{1}{r^k} \right) \left(r + \frac{1}{r} \right) = r \cdot r^k + r \frac{1}{r^k} + \frac{1}{r} r^k + \frac{1}{r} \frac{1}{r^k}$$
$$= r^{k+1} + \frac{1}{r^{k+1}} + r^{k-1} + \frac{1}{r^{k-1}}$$

It follows that

$$r^{k+1} + \frac{1}{r^{k+1}} = \left(r^k + \frac{1}{r^k}\right)\left(r + \frac{1}{r}\right) - \left(r^{k-1} + \frac{1}{r^{k-1}}\right),$$

where $r^k + \frac{1}{r^k}$, $r^{k-1} + \frac{1}{r^{k-1}}$, and $r + \frac{1}{r}$ are integers by the induction hypothesis. It follows that $r^{k+1} + \frac{1}{r^{k+1}}$ is an integer and thus P(r, k + 1) is true.

By the Principle of Strong Induction, it follows that P(r, n) is true for every $n \in \mathbb{N}$. \Box

6. Consider a sequence y_1, y_2, \ldots defined by $y_1 = 1$ and

 $y_n = 2 \cdot y_{\left|\frac{n}{2}\right|}$

for all $n \ge 2$. Prove that $y_n \le n$ for every $n \in \mathbb{N}$.

Solution.

Proof. Let P(n) be the statement that $y_n \leq n$. We will prove that P(n) is true for all $n \in \mathbb{N}$ by strong induction.

- <u>Base case</u>: Note that $y_1 = 1$ and thus $y_1 \le 1$, so P(1) is true.
- Induction step: Let $k \in \mathbb{N}$ be arbitrary. Suppose that, for every $m \in \{1, 2, ..., k\}$, P(m) is true. That is, suppose that $y_m \leq m$ holds whenever $1 \leq m \leq k$ (IH).

Note that $k \ge 1$ and thus $k + 1 \ge 2$, so $\frac{k+1}{2} \ge 1$. Hence

$$1 \le \left\lfloor \frac{k+1}{2} \right\rfloor \le \frac{k+1}{2} < k+1$$

and thus $\lfloor \frac{k+1}{2} \rfloor$ is an integer between 1 and *k*. It follows from the induction hypothesis that

$$y_{\lfloor \frac{k+1}{2} \rfloor} \leq \left\lfloor \frac{k+1}{2}
ight
floor \leq \frac{k+1}{2}.$$

Now

$$y_{k+1} = 2y_{\lfloor \frac{k+1}{2} \rfloor} \le 2\frac{k+1}{2} = k+1$$

and thus $y_{k+1} \le k + 1$, which proves that P(k+1) holds.

It follows from the Principle of Strong Induction that $y_n \leq n$ for every $n \in \mathbb{N}$.

7. The *Fibonacci sequence* f_1, f_2, \ldots is defined by $f_1 = 1, f_2 = 1$, and

$$f_n = f_{n-1} + f_{n-2}$$

for all $n \ge 3$. Prove the following facts about the Fibonacci sequence.

(a) For all $n \ge 2$, it holds that $f_n < \left(\frac{7}{4}\right)^{n-1}$.

Solution.

Proof. We will prove that $f_n < \left(\frac{7}{4}\right)^{n-1}$ holds for all $n \in \mathbb{N}$ by strong induction.

• <u>Base case</u>: Note that $f_2 = 1 < \frac{7}{4} = (\frac{7}{4})^1$. Also,

$$f_3 = 2 = rac{32}{16} < rac{49}{16} = \left(rac{7}{4}
ight)^2.$$

Thus we have shown that $f_n \leq (\frac{7}{4})^{n-1}$ holds when n = 2 and when n = 3.

• Induction step: Let *k* be an integer such that $k \ge 3$ and suppose that $f_m \le (\frac{7}{4})^m$ holds for every $m \in \{1, 2, ..., k\}$ (IH). By the induction hypothesis, it holds that

$$f_k < \left(\frac{7}{4}\right)^k$$
 and $f_{k-1} < \left(\frac{7}{4}\right)^{k-1}$

Now,

$$f_{k+1} = f_k + f_{k+1}$$

$$< \left(\frac{7}{4}\right)^{k-1} + \left(\frac{7}{4}\right)^{k-2}$$

$$= \left(\frac{7}{4}\right)^{k-2} \left(\frac{7}{4} + 1\right)$$

$$= \left(\frac{7}{4}\right)^{k-2} \frac{11}{4}$$

$$= \left(\frac{7}{4}\right)^{k-2} \frac{44}{16}$$

$$< \left(\frac{7}{4}\right)^{k-2} \frac{49}{16}$$

$$= \left(\frac{7}{4}\right)^{k-2} \left(\frac{7}{4}\right)^2$$

and thus $f_{k+1} < \left(\frac{7}{4}\right)^k$.

It follows from the Principle of Strong Induction that $f_n < \left(\frac{7}{4}\right)^{n-1}$ for all $n \ge 2$.

(b) For all
$$n \in \mathbb{N}$$
, it holds that $\sum_{j=1}^{n} f_j = f_{n+2} - 1$.

Solution.

Proof. We proceed by induction.

• <u>Base case</u>: Note that $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, and $f_4 = 3$. Hence

$$\sum_{j=1}^{1} f_j = f_1 = 1 = 2 - 1 = f_3 - 1$$

and

$$\sum_{j=1}^{2} f_j = f_1 + f_2 = 1 + 1 = 3 - 1 = f_4 - 1.$$

• <u>Induction step</u>: Let *k* be an integer such that $k \ge 2$ and suppose that

$$\sum_{j=1}^{k} f_j = f_{k+2} - 1.$$
 (IH)

Now $f_{k+3} = f_{k+1} + f_{k+2}$ by the definition of the Fibonacci sequence, thus

$$\sum_{j=1}^{k+1} f_j = \sum_{j=1}^k f_j + f_{k+1}$$

= $(f_{k+2} - 1) + f_{k+1}$ by IH
= $f_{k+1} + f_{k+2} - 1$
= $f_{k+3} - 1$.
Hence $\sum_{j=1}^{k+1} f_j = f_{(k+1)+2} - 1$.

It follows from the Principle of Mathematical Induction that $\sum_{j=1}^{n} f_j = f_{n+2} - 1$ holds for all $n \in \mathbb{N}$.

(c) For all $n \in \mathbb{N}$, it holds that $\sum_{j=1}^{n} f_j^2 = f_n f_{n+1}$.

Solution.

Proof. We proceed by induction.

• <u>Base case</u>: Note that $f_1 = 1$, $f_2 = 1$, and $f_3 = 2$. Hence

$$\sum_{j=1}^{1} f_j^2 = f_1^2 = 1^2 = 1 \cdot 1 = f_1 f_2$$

and

$$\sum_{j=1}^{2} f_j^2 = f_1^2 + f_2^2 = 1^2 + 1^2 = 2 = 1 \cdot 2 = f_2 f_3$$

• <u>Induction step</u>: Let *k* be an integer such that $k \ge 2$ and suppose that

$$\sum_{j=1}^{k} f_j^2 = f_k f_{k+1}.$$
 (IH)

Note that $f_{k+2} = f_k + f_{k+1}$ by the definition of the Fibonacci sequence and thus

$$\sum_{j=1}^{k+1} f_j^2 = \sum_{j=1}^k f_j^2 + f_{k+1}^2$$

= $f_k f_{k+1} + f_{k+1}^2$ by IH
= $f_{k+1} (f_k + f_{k+1})$
= $f_{k+1} f_{k+2}$.

Hence
$$\sum_{j=1}^{k+1} f_j = f_{k+1} f_{(k+1)+1}$$
.

It follows from the Principle of Mathematical Induction that $\sum_{j=1}^{n} f_j^2 = f_n f_{n+1}$ holds for all $n \in \mathbb{N}$.

(d) Let $a = \frac{1+\sqrt{5}}{2}$ and $b = \frac{1-\sqrt{5}}{2}$. It holds that $f_n = \frac{a^n - b^n}{\sqrt{5}}$ for all $n \in \mathbb{N}$

Solution.

Proof. We proceed by strong induction. First note that

$$a^{2} = \left(\frac{1+\sqrt{5}}{2}\right)^{2} = \frac{1+2\sqrt{5}+5}{4} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2} = 1 + \frac{1+\sqrt{5}}{2} = 1 + a.$$

Similarly,

$$b^{2} = \left(\frac{1-\sqrt{5}}{2}\right)^{2} = \frac{1-2\sqrt{5}+5}{4} = \frac{6-2\sqrt{5}}{4} = \frac{3-\sqrt{5}}{2} = 1 + \frac{1-\sqrt{5}}{2} = 1+b.$$

Hence $1 + a = a^2$ and $1 + b = b^2$.

• Base case: Note that

$$\frac{a-b}{\sqrt{5}} = \frac{\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}}{\sqrt{5}} = \frac{\frac{\sqrt{5}}{2} + \frac{\sqrt{5}}{2}}{\sqrt{5}} = 1 = f_1$$

and using the facts that $1 + a = a^2$ and $1 + b = b^2$ note that

$$\frac{a^2 - b^2}{\sqrt{5}} = \frac{1 + a - (1 + b)}{\sqrt{5}} = \frac{a - b}{\sqrt{5}} = 1 = f_2$$

• <u>Induction step</u>: Let $k \ge 2$ and suppose that

$$f_m = \frac{a^m - b^m}{\sqrt{5}} \tag{IH}$$

holds for every $m \in \{1, 2, \dots, k\}$. Now

$$f_{k+1} = f_k + f_{k-1}$$

= $\frac{a^k - b^k}{\sqrt{5}} + \frac{a^{k-1} - b^{k-1}}{\sqrt{5}}$ by IH
= $\frac{a^{k-1}(a+1) - b^{k-1}(b+1)}{\sqrt{5}}$
= $\frac{a^{k-1}a^2 - b^{k-1}b^2}{\sqrt{5}}$ because $1 + a = a^2$ and $1 + b = b^2$
= $\frac{a^{k+1} - b^{k+1}}{\sqrt{5}}$.

It follows from the Principle of Mathematical Induction that $f_n = \frac{a^n - b^n}{\sqrt{5}}$ holds for all $n \in \mathbb{N}$.