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Note. The floor function takes a real number x as input and outputs the greatest integer | x| that is
less than or equal to x. For example,

12]=1, |x]=3 |7]=7  |-13/=-2, and H:o.

For most of the following problems, use induction unless otherwise stated.
1. Prove for all numbers n € IN that
/2
bl (”) — o1,
=0 \?

(Note: Induction will not be helpful here. Try out a few small values of 7 to see if you find a
pattern and use Binomial Theorem instead.)

Solution. First, let’s try expanding out the sum in question for a few small values of
n to see what it looks like. For each n € IN, define s(n) to be the sum in question.

e Whenn =1, wehave [1/2| = 0and
w-E ()= ()=
e When n = 4, we have [4/2] =2 and
5(4):;0(:],) _ (§>+<§>+<2) C14641-—8=2

e Whenn =7, wehave |7/2| =3 and

s(7):]§<27j> - (g) + <Z> + (Z) + <Z) —14+21435+7=64=2°



We see that s(n) is the sum of all () where m is an even integer. Another way to write

this sum is as
w5 (00 )

m is even

where we sum only over the even integers between 0 and n. Now, let’s explore what
happens when we use the Binomial Theorem to expand the sums of (1 + 1)" and
(1 —1)". For example, note that

e £ -0 ()00
oo £ (e (-6 (- )+ ()

If we add these two equalities together, we find

#1023) 22 ()

(where the binomial coefficients with odd lower indices are cancelled out). Dividing

by two yields the result
2= (N (54 (3
~\0 2 4)

To prove the claim, we can follow this pattern for arbitrary n.

and

Proof. Let n € IN be arbitrary. By the Binomial Theorem, we have that
= (n
s £ )
m=0 \1"

where we can split the summands of the sum on the right into even and odd indices

7= % (w)* L () ®

m=0 m=0
m is even m is odd

=s(n) +t(n)

where we define



Similarly, by the Binomial Theorem, we have

0=0"=(1+(— i(:)

Because (—1)"™ = 1 when m is even and (—1)" = —1 when m is odd, this becomes

EO i

m is even m is odd

=s(n) —t(n).
Adding together the equalities in (x) and (**) yields
2" =2s(n)

and dividing by 2 yields the desired result. ]

2. Prove for all n € N that

i = —
p= G+1) n+1
Solution.

Proof. For eachn € N, let P(n) be the statement that } " e +1) = ;- We will prove
that P(n) holds for all n € N by induction.

e Base case: When n = 1, we have

t 111
iG+1) 2 1+1

i=1JU
and thus P(1) is true.

e Induction step: Let k € IN be arbitrary and suppose that P(k) is true. That is,
suppose that

k
Z G+ 1 % _]T_ 1 (Induction Hypothesis)
j=



Now

k+1 1 k 1 N 1

1

LG

+

.
k

k+1 " (k+1)(k+2)
1

1

:k+1<"+k+z>

k2 +2k+1

_k+1
k42

and thus P(k + 1) is true.

(k+1)(k+2)

by IH

By the principle of mathematical induction, we conclude that P(#) is true for all n €

IN.

3. Prove for all natural numbers n > 2 that

v%<§i
k=1

Solution.

1

S

k

O]

Proof. For each n € N let P(n) be the statement that \/n < Y}, ﬁ We will prove

that P(n) is true for all n > 2 by induction.

¢ Base case: Note that v/2 < 2 and thus

V2

¢2:v§;¢2<2+

so P(2) is true.

2

1

>

=1+—==)

k

=1

1

vk

4

e Induction step: Let m € IN be arbitrary such that m > 2 and suppose that P(m)

is true. That is, suppose that

m
1
Vm <y —
Now, by the induction hypothesis,
m+1 1 1 1
—==) =+ > \/m+
o VEk k; vk m+1

(IH)



It remains to prove that

1
Vm + >vm+ 1.

Vim+1
Now, v/m +1 > \/m and thus
Vm+1y/m > m,
as m > 0. Adding 1 to both sides yields
Vm+1y/m+1>m+1

and dividing both sides by v/m + 1 yields

1
\/m+m> m—+1.
m

It follows that P(m + 1) holds.
By the principle of mathematical induction, we conclude that P(n) is true for all nat-

ural numbers n > 2. ]

4. Consider a sequence defined by a; = v/2 and

A1 = V2 +ay
for all n € IN. Prove that V2 < a, < 2foralln € N

Solution.

Proof. Let P(n) be the statement that v/2 < a,, < 2. We will prove that P(n) is true for
all n € IN by induction.

* Base case: Note that a; = v/2 and v/2 < v/2 < 2,50 P(1) is true.
e Induction step: Let k € IN be arbitrary and suppose that P(k) is true. That is,

suppose that
V2 <a <2 (IH)
Now ay,1 = /2 + a. It follows from the induction hypothesis that
V2+V2<\V2+a < V2+2
and thus

V2 <\24V2< a1 < Va=2,
which proves that P(k + 1) holds.

It follows from the Principle of Mathematical Induction that V2 < a, < 2 holds for
every n € IN. O



5. Letr € R be a real number such that r + 1 is an integer. Prove that " + 1 is an integer for
alln € IN.

Solution.

Proof. Letr € R and suppose that r +  is an integer. For each n € IN let P(r,n) be the
statement “r" + L is an integer”. We will prove that P(r, n) is true for all n € N by
strong induction.

* Base case: Note that 7! + %1 =r+ %, which is an integer by assumption. Thus
P(r,1) is true.

e Induction step: Let k € IN be arbitrary and suppose that P(r,1), P(r,2), ..., and
P(r, k) are all true. That is, suppose that

1 . .
"4 i is an integer for each m € {1,2,...,k}. (TH)
Now,
L1 1 co1 1, 11
r+—=)\r+- | =rr+ro+-1r+-—
r T r r rr
1
_ k1 k—1
=71 +7’kﬁ+r +rk7_1
It follows that

1 1 1 1
pk+1 K k—1

where ¥ + rlk, k=14 rk%l’ and r + 1 are integers by the induction hypothesis. It
follows that r*+1 + ,k% is an integer and thus P(r,k + 1) is true.

By the Principle of Strong Induction, it follows that P(r, n) is true for every n € N. [

6. Consider a sequence y1,Y>, ... defined by y; = 1 and
Yn=2-Y3
for all n > 2. Prove that y,, < n for every n € IN.
Solution.

Proof. Let P(n) be the statement that y, < n. We will prove that P(n) is true for all
n € IN by strong induction.

e Base case: Note that y; = 1 and thus y; <1, so P(1) is true.

* Induction step: Let k € IN be arbitrary. Suppose that, for every m € {1,2,...k},
P(m) is true. That is, suppose that y,, < m holds whenever 1 < m < k (IH).




Note that k > 1 and thusk+1 > 2, so szrl > 1. Hence

1< {k—FlJ §k+1 k41

2 2

and thus |*3!] is an integer between 1 and k. It follows from the induction
hypothesis that
k+1 k+1

yt"ﬂg{zJ 2

k+1
yk-i-l:zyvﬂj SzT =k+1

2

VAN

Now

and thus y;41 < k+ 1, which proves that P(k + 1) holds.

It follows from the Principle of Strong Induction that v, < n for every n € IN. O

7. The Fibonacci sequence fi, f,... is defined by f; =1, f, =1, and
fo=fa—1+ fu2
for all n > 3. Prove the following facts about the Fibonacci sequence.
(a) Foralln > 2,itholds that f, < (%)n_l.
Solution.
Proof. We will prove that f, < (%) " holds forall n € N by strong induction.

e Base case: Note that f, =1 < 7 = (%)1. Also,

32 49 7\ 2
f3_2_16<16_(4> :

Thus we have shown that f, < (£)""! holds when n = 2 and when n = 3.

* Induction step: Let k be an integer such that k > 3 and suppose that f,, <
(2)™ holds for every m € {1,2,...k} (IH). By the induction hypothesis, it

holds that
7 k 7 k—1
fk < <4) and fk71 < <4> .




Now,

fer1 = fe+ fien

and thus fr1 < (%)k.

It follows from the Principle of Strong Induction that f, < (Z)n_1 for all n >
2. O

n
(b) Forall n € N, it holds that Zf] = fny2 — L.
j=1

Solution.
Proof. We proceed by induction.
¢ Base case: Note that f1 =1, f, =1, f3 =2, and f4 = 3. Hence

fi=h=1=2-1=f-1

~.
Il —
,_\I ]

and )
Y fi=A+Hh=1+1=3-1=f,—1
j=1

¢ Induction step: Let k be an integer such that k > 2 and suppose that

=

Y. fi=fira— 1. (IH)

=



Now fiy3 = fi+1 + fir2 by the definition of the Fibonacci sequence, thus

k+1 k

Y fi= ) fitfen

=1 =1
= (fir2 = 1) + fin1 by TH
= fes1t+ fir2 — 1
:fk+3 -1

k+1
Hence Y fj = fer1)42 — L.
=1

n
It follows from the Principle of Mathematical Induction that Z fi = forz —1
j=1
holds for all n € IN. O

n
(c) Foralln € N, it holds that } | ff = fufui1.
j=1

Solution.

Proof. We proceed by induction.
* Base case: Note that f; =1, f, =1, and f3 = 2. Hence

1~

ff=fR=1"=11=Aff

j=1

and

N

Y=t fA=r+1=2=12=ff
j=1

¢ Induction step: Let k be an integer such that k > 2 and suppose that

k
Y. 17 = fifir (IH)
=1

Note that fyi» = fx + fr+1 by the definition of the Fibonacci sequence and
thus
k+1

k
Y=Y
j=1 j=1

= fifer1 + fin by IH
= fre1(fx + fr1)

= fk+1fk+2-



k1
Hence ) fj = fit1fri1)11-
=1

n

It follows from the Principle of Mathematical Induction that ) sz = fufu+1
j=1
holds for all n € IN. O

(d) Leta = 235 and b = 155, Tt holds that f, = ““" foralln € N

Solution.

Proof. We proceed by strong induction. First note that

2
, (1++5 142545 6+2V5 3445 1++/5
2 4 4 2 2
Similarly,
2
2 1-5 _1—2\@+5_6—2\@_3—\@_1+1—\@_1+b
N 2 N 4 42 2 ‘
Hencel4+a =a?and 1+ b = b2
¢ Base case: Note that
1+v5 _ 1-15 5 5
b _MERE S g
V5 V5 V5
and using the facts that 1 +a = a2 and 1 4+ b = b? note that
az—b2_1+a—(1—|—b)_a—b_1_f
V5 V5 V5 >
¢ Induction step: Let k > 2 and suppose that
am — pm
= IH

10



holds for every m € {1,2,...,k}. Now

fer1 = fet+ fia

llk o bk llk_l . bk—l

= + by IH
NG NG Y
a1 a+1) (b4 1)
V5

k=12  1k—13,2

_4 b because 1 +a = a®and 1 + b = b?
V5
ak+1 _ bk+1
V5

It follows from the Principle of Mathematical Induction that f,, = “njgbn holds for all

n € IN. O

11



