MATH 135 — Fall 2021 Practice Problems – Chapter 5

Mark Girard

March 24, 2025

Part I

Determine which of the following statements are true and which are false. Prove the true statements. For the false statements, write the negation and prove that.

- 1. $\forall A \subseteq \mathbb{Z}, \exists B \subseteq \mathbb{Z} \text{ so that } 1 \in B A.$
- 2. $\forall A \subset \mathbb{Z}, \exists B \subseteq \mathbb{Z}$ so that $1 \notin B A$.
- 3. For all sets *A*, *B*, and *C*, $(A \cup B) \cap C \subseteq A \cup (B \cap C)$.
- 4. For all sets *A*, *B*, and *C*, $A \cup (B \cap C) \subseteq (A \cup B) \cap C$.
- 5. For all sets *A*, *B*, and *C*, if $A \times B = A \times C$ then B = C.
- 6. For all sets *A*, *B*, and *C*, if $A B \subseteq C$ then $A C \subseteq B$.
- 7. For all sets *A*, *B*, and *C*, if $A \cap B \subseteq C$ and $B \cap C \subseteq A$ then $C \cap A \subseteq B$.
- 8. For all sets *A*, *B*, and *C*, if $A (B \cap C) = \emptyset$ then $A C = \emptyset$.
- 9. For all sets *A*, *B*, and *C*, if $A C = \emptyset$ then $A (B \cap C) = \emptyset$.

Part II

- 1. Proof De Morgan's Laws for sets. That is, for all sets A and B, it holds that:
 - (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$, and
 - (b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- 2. Suppose *A* and *B* are arbitrary subsets of \mathbb{Z} such that $(2,3) \in A \times B$ and $(3,4) \in A \times B$, but that $(1,3) \notin A \times B$.
 - (a) Find another element in $A \times B$ that is not (2,3) or (3,4). Explain.
 - (b) Find another element that is not in $A \times B$. Explain.
- 3. Suppose *A* and *B* are arbitrary subsets of \mathbb{Z} such that $A \cap B = \{1\}$.

- (a) Find an element of $A \times B$. Explain why it is an element of $A \times B$.
- (b) Find an element of the complement $\overline{A \times B}$. (Here, assume that the universal set is $\mathbb{Z} \times \mathbb{Z}$.) Explain.