MATH 135 — Fall 2021
Practice Problems (Solutions)- Chapters 6, 7, and 8

Mark Girard
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Topics: divisibility, gcd, linear Diophantine equation, Euclidean Algorithm, prime factoriza-
tions, and modular arithmetic. (Problems are in no particular order.)

1. Determine d = gcd (339, —2145) and find integers s and ¢ such that 399s — 2145t = 4.

Solution. We can use the Extended Euclidean Algorithm to compute ged (2145, 339),
which produces the following table:

x y r
Ry 1 0 | 2145

R, 0 1] 339

Ri1 —6Ry = R3 1 -6 | 111
Ry —3R3 =Ry -3 19 6
R3 —18R4 = R5 55 | —348 3
Ry —2R5=Re | —113 | 715 0

From the table, we see that 2145 - (55) 4 339 - (—358) = 3. It follows that
339 . (—348) — 2145 - (—55) = 3,

where 3 = gcd(2145,339) = ged (339, —2145).

2. Prove the following statement:

Foralla,b,c € Z,if gcd(a,b) =1landa | cand b | ¢, thenab | c.

Solution.

Proof. Leta,b,c € Z. Assume that gcd(a,b) = 1and a | cand b | ¢. By CCT, there
exists integers x,y € Z such that ax + by = 1. By the definition of divisibility, there
exists k,{ € Z such that ak = c and b/ = c. Note that b/ = ak which implies that
b | ak. Because gcd(a,b) = 1, it follows from CAD that b | k. Hence there exists an



integer m € Z such that bm = k. Now,
¢ = ak = abm

and thus ab | c as desired. O

3. Prove or disprove the following statement

For all integers x,y,z € Z,if x | yzthen x | y or x | z.

Solution. This statement is false. It's negation is the following statement:

There exist integers x,y,z € Z such that x | yzbut x { y and x { z.
Proof (of the negation). Let x = 6, y = 2 and z = 3. Then x | yz because 6 | 6, but 6 1 2
and 6 1 3. O

4. Prove, for all positive integers d, m, and n, that if d = gcd(m, n) then for all positive integers k
it holds that ged(m, nk) = ged(m, dk).
Solution.
Proof. Letd = gcd(m, n). By Bezout’s Lemma, there exist integers s, t € Z such that
ms + nt = d.

Let k € IN be an arbitrary positive integer and define e = gcd(m, nk). By Bezout’s
Lemma, there exist integers x,y € Z such that

mx + nky = e.
Moreover, because e | m and e | nk, there exist integers a,b € Z such that m = ae and
nk = be. Now
dk = (ms + nt)k [Because d = ms + nt]
= mks + nkt
= aeks + bet [Because m = ae and nk = be]
= e(aks + bt)

and thus e | dk. Hence e is a common divisor of m and dk. Moreover, because d | n,
there is an integer ¢ such that dc = n. Now
e = mx + nky
= mx + dcky [Because n = dc|
= mx + (dk)(ny).

Thus, by the GCD Charaterization Theorem, it follows that e = gcd(m, dk). This
completes the proof. O



5. Let a and b be integers, let d = gcd(a,b), and consider the set S = {ax +by : x,y € Z}.
Prove that
S={kd : ke Z}

Solution.

Proof. ~ ® We first prove that S C {kd : k € Z}. Let n € S be an arbitrary element
of S. Then there are integers x,y € Z such that ax + by = n. Because d | a and
d | b, it follows that d | n by DIC. Thus, there exists an integer k € Z such that
n = kd, which means thatn € {kd : k € Z}.

e We next prove that {kd : k € Z} C S. Letn € {kd : k € Z} so that there is
an integer k € Z satisfying n = kd. By B’ezout’s Lemma, there exists a choice
of integers s,t € Z such that as + bt = d. Choose x = ks and y = kt, which are
integers. Then

ax + by = kas + kbt = k(as +bt) =kd =n

and thusn € S.
Thus we have proved that S C {kd : k € Z} and {kd : k € Z} C S, so it follows that
S={kd : ke Z}. O

6. Prove that, for all prime numbers p and q, {px+qy : x,y € Z} = Z if and only if p # g.

Solution.

Proof. Let p and g be prime numbers, let d = ged(p, 9), and define
S={px+qy:xyecZ}

From Problem 5, it holds that S = {kd : k € Z}.

e [Toprovep #q = S = Z.] Assume that p # g4. The positive divisors of p are
1 and p, while the positive divisors of g are 1 and 4. Because p # g, it follows
thatd = gcd(p,q) =1. Now, S = {k : k € Z} = Z, as desired.

e [Toprove p =g = S # Z.] Assume that p = q. Thend = gcd(p,q) = p and
thus S = {kp : k € Z}. Note that 1 ¢ S. Indeed, if it were the case that 1 € S,
then there would be an integer k € Z such that 1 = kp, which is a contradiction,
as p does not divide 1. Thus Z ¢ S, which implies that S # Z.

This completes the proof. O

7. Leta = 32574131, b = 5'7213%223%, and c = 3-5-7- 13 - 23.

(a) Determine ged(a,b).



Solution. The greatest common divisor of these numbers is given by
ng([l, b) — 3min{2,0} . 5min{3,1} . 7min{4,2} . 13min{1,2} . 23min{0,9}

=30.50.72.131.230
=5.72.13

(b) What is the smallest integer t such thata | ¢! and b | ¢!?

Solution. The answer is 9. Indeed, when t = 9, note that
d=c=3.5.7.13".23,

which is divisible by both 4 and b. For every integer ¢ < 9, one has that 23° 1 ¢!
because 9 £ t and thus b 1 ¢'.

8. Suppose a € Z and consider the statement P: “if 24 | a? then 36 | a%”.

(a) Prove P.
(b) Prove or disprove the converse of P.

Solution.

(@) e [Solution 1.] Suppose that 24 | a®>. Note that 12 | 24 and that 3 | 24, and
thus 12 | a? and 3 | a? by Transitivity of Divisibility. Because 3 is prime, it
follows from Euclid’s Lemma that 3 | 2. Now 12 | a? and 3 | 4, so it follows
that (12-3) | a®. Hence 36 | a° as desired.

* [Solution 2]. Note that the prime factorisation of 24 is 23 .31, Hence the
prime factorization of 2 must include at least 2 and 3 in its list of prime

factors,
a:2k3gp§3p%”,

where k, ¢ > 1. Now,
a® = 2% .33 pln Lyl
= (23.3%).230=1) . 33(6-1) . pgf"s o pdn
— 36 . 6 . 23(k_1) . 33“_1) . pgag' e p?l“"

and thus 36 | a°.

(b) The converse of P is“If 36 | a® then 24 | a>.” The converse of P is false. Indeed,
consider a = 6. Then a® = 6% -6 = 36 -6 50 36 | a°. But a?> = 36 and 24 { 36 so
24§ a®.

9. Suppose a and b are positive integers and let ¢ be an integer such that ged(a,b) | c. Prove



that there exists a unique integer solution (x’, y’) to the linear Diophantine Equation
ax+by =c

! b
such that 0 < x’ < ed(aD)"

Solution.

Proof. By the Linear Diophantine Equaion Theorem, there exists an integer solution

(x0,Y0) because ged(a,b) | c. By the Division Algorithm, because m > 0, there

exists a unique choice of integers g, r € Z such that

xXp = b +7r and 0<r< b
0 qgcd(a,b) - ged(a,b)
Now define x' = xp — qm and ¥y’ = yo + qm. By the Linear Diophantine

Equation Theorem, it holds that (x’, ') is also a solution to this equation. Note that
X' =r

and thus 0 < x/ < %
ged(a,b)
To prove that (x/,y) is unique, let (x”, ") be another solution to the Diophantine

equation such that 0 < x” < m. By the Linear Diophantine Equation Theorem,

. It remians to prove that this solution is unique.

there exists an integer n € Z such that

X" =x —nL Yy =y 2
*" Tged(a, b) 0" ged(a,b)’
In particular, note that
. b "
Xp = 7gcd(a,b) +x.
By the Division Algorithm, it must be the case that m = g and x” = x’. This completes
the proof. O

10. Suppose that Canada Post issued 49¢ and 53¢ stamps. How many different ways could you
purchase exactly $100 worth of these kinds of stamps?

Solution. We need to find all solutions to the linear Diophantine equation
49x + 53y = 10000. (%)

We can use the Extended Euclidean Algorithm to compute ged(49,53), which pro-
duces the following table:



X y r

Ry 1 0153

Ry 0 1149

Ry —1R; = R3 1-1| 4

Ry—12R3 =Ry | —12 | 13| 1

From the table above, we see that gcd(53, 49) = 1 and moreover that
53(—12) +49(13) = 1.

Multiplying this by 10000, we see that one solution to the equation (x) is

xp = 130000 and Yo = —120000
and sll other solutions are of the form

x = xo — 53n and  y=yo+49n
for some n € Z. The set of valid solutions having x > 0 and y > 0 is described as

S={(xo—53nm,y0+49n) : n € Z, xo—53n > 0and yo + 49n > 0} .

(These are the solutions where the numbers of stamps of both types are both positive.)
Note that
120000 = 49 - 2449 — 1

and thus

Yo +49 - 2449 = —120000 + 49 - 2449
=1

and also

xo — 53 - 2449 = 130000 — 129797
= 203.

Hence, one solution (x1,11) having x; > 0and y; > 0is
x1 = 203 and yo=1.

All valid solutions are of the form (203 — 53n,1 + 49n) for some integer n such that
203 —53n > 0and 1 4+ 49n > 0. The valid soltions are therefore

203,1)
(203 — 53,1 4 49) =(150,50)

(203 —2-53,1+2-49) =(97,99)

(203 —3-53,1+ 3 -49) =(44,108).

(
(



Hence there are only four ways to purchase exactly $100 worth of 49¢ and 53¢ stamps.
The solution set we are interested in is given by

S={(x,y) €Z*: x> 0and y > 0and 49x + 53y = 10000}
= {(203 — 531,14 49n) : n € Zand 203 — 531 > 0and 1+ 491 > 0}
= {(203,1), (150,50), (97,99), (44,108)},

which contains only 4 elements.

11. Let n be a positive integer. Prove the following statements.

(a) If nis odd, then n? =1 (mod 8).

Solution. Let n be an odd integer. Then either n = 1 (mod 8), n = 3 (mod 8),
n=>5 (mod 8),orn =7 (mod 8). Let’s consider each case separately.

e Ifn=1 (mod 8), thenn? =12 =1 (mod 8).
e Ifn =23 (mod 8),thenn? =32 =9 =1 (mod 8).
e Ifn=>5 (mod 8),thenn> =5>=25=8-3+1=1 (mod 8).
e Ifn="7 (mod 8),thenn>’=7>=49=8-6+1=1 (mod 8).
In every case, it holds that n2 = 1 (mod 8).
(b) If n®> #1 (mod 3), thenn =0 (mod 3).
Solution. We prove the converse, which states: “If n # 0 (mod 3), then n? = 1

(mod 3)”.

Proof. Suppose that n # 0 (mod 3). Then either n = 1 (mod 3) orn = 2
(mod 3). We consider both cases separately.

e Ifn=1 (mod 3), thenn?> =1> =1 (mod 3).
e Ifn=2 (mod 3),thenn>=4=3+1=1 (mod 3).

In either case, it holds that n2 = 1 (mod 3). O

12. Solve the equation [9][x] = [5] in Zg3.

Solution. We can use the Extended Euclidean Algorithm to compute gcd(43,9),
which produces the following table:



x y| r
R4 1 0|43

R, 0 1] 9

Ry —4R, = Rj3 1 —4 1 7
Ry—Ry=Ry | —1 5| 2
R3 —3R4 = Rj5 4| -19| 1

From the table, we see that 43 - (4) —9-(19) = 1, and thus 9- 19 = 43 -4 — 1, which
implies that
9-19=-1 (mod 43).

Multiplyting this congruence by —5 yields
9-(19-(—5)) =5 (mod 43).
Note that
19-(—5)=-95=3-43-95=129—-95=34 (mod 43).
Hence, we have that
19][34] = [19][19- (~5)] = [5]  in Zus.

Because gcd(9,43) = 1, there is only one solution, so the is the only solution is [x] =
[34].

13. (a) Find the units digit of 6012016% (in base 10).

Solution. We need to find the remainder of 6012016%° when divided by 10. Note
that 6012016 = 6 (mod 10) and thus

6012016%° = 6% (mod 10).

Next, we prove by induction that, for all n € NN, it holds that 6" = 6 (mod 10).
Indeed, this is true for the Base Case, because 6! = 6 (mod 10). To prove the
Induction Step, let k € IN ans suppose that 65 = 6 (mod 10). Then

6671 =6 6=6-6=36=6 (mod 10).

By the Principle of Mathematical Induction, it holds that 6" = 6 (mod 10) for
all n € IN. We may conclude that 620 = 6 (mod 10) and thus the units digit of
6012016% is 6.

(b) Find the last two digits of 7142 in base 10.



71942

Solution. To find the last two digits, we need to find the remainder of when

divided by 100. Now, 72 = 49 and note that

49> = (50 —1)> =50> —2-50 + 1
—=100-25 — 100 + 1
—100-24 +1

and thus 492 = 1 (mod 100). Hence,
7= (49 =1= (mod 100).
Next, note that

1942 = 19410 + 2
=(97-2)-(2-5) 42
= 4k +2

where k = 97 - 5. Hence,
71942 = gA9752 = (74975 .72 =1.49 =49  (mod 100).

Hence the last two digits of 7142 are 49.

“ Alternatively, one may mulitply out to find that 49 = 2401.

14. Prove the following facts about the binomial coefficient.

(a) For all non-negative integers n,k € Z, it holds that <Z> cZ.

Solution. We prove by induction. For each non-negative integer 1, let P(n) be

n
the statement that “For all non-negative integers k, it holds that k) €eZ”

* Base case: By definition, one has (8) =1land (2) = 0 whenever k > 0. Thus
(9) is an integer for every non-negative integer k. Hence P(0) is true.

e Induction Step: Let m be a non-negative integer and assume that P(m) is
true. That is, assume that () is an integer for every non-negative integer /.

We prove that (m;rl) is an integer for every non-negative integer k. Let
k € Z be an arbitrary non-negative integer. There are two cases:

- If k < m + 1, then by Pascal’s Identity, it holds that

(") =)+ (1)



which is an integer, because (') and (', ) are integers by the Induction
Hypothesis.

- Ifk=m+1, then (") = (Zﬁ) =1, which is an integer.

— Ifk > m+1, then (") = 0 by definition, which is an integer.

In each case, we see that (") is an integer. Hence P(m + 1) is true.

By the principle of induction, it holds that (}) is an integer for all non-negative
integers n,k € Z.

(b) Let p be a prime number. It holds that

<Z> =0 (mod p)

forallk € {1,2,...,p—1}.

Solution.

Proof. Letk € {1,2,...,p — 1}. By definition, we have that

(£) = m5

and thus

and thus p | (k!(p —k)!(})). Note also that

ged(p,1) = ged(p,2) = -+~ =gcd(p,p—1) =1.

Becausel1 <k <p—-1land1l < p—k < p—1,itfollows that

ged(p, kl(p—k)!) = 1.

Because p | (k!(p —k)!(})) and ged(p, k!(p — k)!) = 1, it follows from Euclid’s

Lemma that
4
Pl ( k)-

This implies that (!) = 0 (mod p). O
15. Prove the following statements.
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(@) The sum of any three consecutive natural numbers is divisible by 3.

Solution. Symbolically, we can express this statement as:
VneZz,3| (n+(n+1)+ (n+2))

Proof. Letn € Z be arbitrary. Now,

n+mn+1)+(n+2)=3n+3 (mod 3)
=3(n+1) (mod 3)
=0 (mod 3),

and thus3 | (n+ (n+1) + (n+2)). O

(b) The sum of any four consecutive natural numbers is NOT divisible by 4.

Solution. Symbolically, we can express this statement as:
VneZ 4t (n+(n+1)+ (n+2)+ (n+3))

Proof. Let n € Z be arbitrary. Now,

n+nm+1)+n+2)+n+3)=4n+1+2+3 (mod 4)
=4n+7 (mod 4)
=7 (mod 4),

but4{7andthus4f{ (n+ (n+1) + (n +2) + (n +3)). O

16. Let x € Z. Prove that 4x? + x + 3 is not divisible by 5.

Solution. We only need to consider x € {0,1,2,3,4}. Construct the following table:

x 0[1[2]3] 4

x? 0[1]4]9]16

x? (mod 5) 0|1/4]4]1
4x? (mod 5) 0|4|1]|1]| 4
4x> +x+3 (mod5) 3|3 [1[2] 1

Note that 4x%> + x +3 #Z 0 (mod 5) for each x, and thus 4x* + x + 3 is never divisible
by 5.

17. Let p be a prime number. Prove the following statement:

There exists an integer n € Z such that n®> = p + 8 — p = 19.

11



Solution. If p = 19, then p +8 = 19 + 8 = 27 and we may choose n = 3 such that
n® = 27. Conversely, suppose that there exists an integer n € Z such that n® = p + 8.
It follows that n®> — 8 = p and thus

(n—2)(n*+2n+4) = p.
We first prove that n? +2n +4 > 1.
e Ifn >0, thenn®+2n+4 > 4.
o Ifn=—1,thenn?+2n+4=3.

e Ifn < —1, then n < —2 which implies n*> > —2#n and thus n* +2n > 0. Hence
n?>42n+4 > 4.

In each case, we have n? + 2n + 4 > 1. Because p is prime, its only poisitive divisors
are 1 and p, so it must therefore be the case that

n—2=1 and n?+2n+4=np.
Thatis,n =3andp=n*>+2n+4=9+6+4=19.
18. Leta,b € Z and let p be a prime number. Prove that (a + b)? = a? + b? (mod p).

Solution. There are two ways to prove this.

* Proof 1. Using the Binomial Theorem, we have

(a4+Db)P = i <Z> aP~kpk

k=0

:<p>a”bo+<p)a7’_1b1+---+< P )alb”_l—F(p)aobP
0 1 p—1 p

=a’ + <p>ap—1b1+---+< P )ale—1+bP.
1 p—1

However, from problem 14b we see that

<Z> =0 (mod p)

forevery k € {1,2,...,p — 1}, and thus

(a+b)F =a’ + (p>ap1bl +-+ < P 1>alb”1 + 0P (mod p)

1 —
=a’ +0+---+0+0bF (mod p)
=al +bF (mod p).
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* Proof 2. From the Corollary to Fermat’s Little Theorem, it holds that
a? =a (mod p), VW =0b (modp), and (a+b)’ =a+b (mod p).

Thus
(a+b)P=a+b=a’+b" (mod p).
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