
MATH 135 — Fall 2021
Practice Problems (Solutions)– Chapters 6, 7, and 8

Mark Girard

December 3, 2021

Topics: divisibility, gcd, linear Diophantine equation, Euclidean Algorithm, prime factoriza-
tions, and modular arithmetic. (Problems are in no particular order.)

1. Determine d = gcd(339,−2145) and find integers s and t such that 399s − 2145t = d.

Solution. We can use the Extended Euclidean Algorithm to compute gcd(2145, 339),
which produces the following table:

x y r
R1 1 0 2145
R2 0 1 339

R1 − 6R2 = R3 1 −6 111
R2 − 3R3 = R4 −3 19 6

R3 − 18R4 = R5 55 −348 3
R4 − 2R5 = R6 −113 715 0

From the table, we see that 2145 · (55) + 339 · (−358) = 3. It follows that

339 · (−348)− 2145 · (−55) = 3,

where 3 = gcd(2145, 339) = gcd(339,−2145).

2. Prove the following statement:

For all a, b, c ∈ Z, if gcd(a, b) = 1 and a | c and b | c, then ab | c.

Solution.

Proof. Let a, b, c ∈ Z. Assume that gcd(a, b) = 1 and a | c and b | c. By CCT, there
exists integers x, y ∈ Z such that ax + by = 1. By the definition of divisibility, there
exists k, ℓ ∈ Z such that ak = c and bℓ = c. Note that bℓ = ak which implies that
b | ak. Because gcd(a, b) = 1, it follows from CAD that b | k. Hence there exists an
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integer m ∈ Z such that bm = k. Now,

c = ak = abm

and thus ab | c as desired.

3. Prove or disprove the following statement

For all integers x, y, z ∈ Z, if x | yz then x | y or x | z.

Solution. This statement is false. It’s negation is the following statement:

There exist integers x, y, z ∈ Z such that x | yz but x ∤ y and x ∤ z.

Proof (of the negation). Let x = 6, y = 2 and z = 3. Then x | yz because 6 | 6, but 6 ∤ 2
and 6 ∤ 3.

4. Prove, for all positive integers d, m, and n, that if d = gcd(m, n) then for all positive integers k
it holds that gcd(m, nk) = gcd(m, dk).

Solution.

Proof. Let d = gcd(m, n). By Bezout’s Lemma, there exist integers s, t ∈ Z such that

ms + nt = d.

Let k ∈ N be an arbitrary positive integer and define e = gcd(m, nk). By Bezout’s
Lemma, there exist integers x, y ∈ Z such that

mx + nky = e.

Moreover, because e | m and e | nk, there exist integers a, b ∈ Z such that m = ae and
nk = be. Now

dk = (ms + nt)k [Because d = ms + nt]
= mks + nkt
= aeks + bet [Because m = ae and nk = be]
= e(aks + bt)

and thus e | dk. Hence e is a common divisor of m and dk. Moreover, because d | n,
there is an integer c such that dc = n. Now

e = mx + nky
= mx + dcky [Because n = dc]
= mx + (dk)(ny).

Thus, by the GCD Charaterization Theorem, it follows that e = gcd(m, dk). This
completes the proof.
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5. Let a and b be integers, let d = gcd(a, b), and consider the set S = {ax + by : x, y ∈ Z}.
Prove that

S = {kd : k ∈ Z}

Solution.

Proof. • We first prove that S ⊆ {kd : k ∈ Z}. Let n ∈ S be an arbitrary element
of S. Then there are integers x, y ∈ Z such that ax + by = n. Because d | a and
d | b, it follows that d | n by DIC. Thus, there exists an integer k ∈ Z such that
n = kd, which means that n ∈ {kd : k ∈ Z}.

• We next prove that {kd : k ∈ Z} ⊆ S. Let n ∈ {kd : k ∈ Z} so that there is
an integer k ∈ Z satisfying n = kd. By B‘ezout’s Lemma, there exists a choice
of integers s, t ∈ Z such that as + bt = d. Choose x = ks and y = kt, which are
integers. Then

ax + by = kas + kbt = k(as + bt) = kd = n

and thus n ∈ S.
Thus we have proved that S ⊆ {kd : k ∈ Z} and {kd : k ∈ Z} ⊆ S, so it follows that
S = {kd : k ∈ Z}.

6. Prove that, for all prime numbers p and q, {px + qy : x, y ∈ Z} = Z if and only if p ̸= q.

Solution.

Proof. Let p and q be prime numbers, let d = gcd(p, q), and define

S = {px + qy : x, y ∈ Z}.

From Problem 5, it holds that S = {kd : k ∈ Z}.

• [To prove p ̸= q =⇒ S = Z.] Assume that p ̸= q. The positive divisors of p are
1 and p, while the positive divisors of q are 1 and q. Because p ̸= q, it follows
that d = gcd(p, q) = 1. Now, S = {k : k ∈ Z} = Z, as desired.

• [To prove p = q =⇒ S ̸= Z.] Assume that p = q. Then d = gcd(p, q) = p and
thus S = {kp : k ∈ Z}. Note that 1 /∈ S. Indeed, if it were the case that 1 ∈ S,
then there would be an integer k ∈ Z such that 1 = kp, which is a contradiction,
as p does not divide 1. Thus Z ̸⊆ S, which implies that S ̸= Z.

This completes the proof.

7. Let a = 325374131, b = 5172132239, and c = 3 · 5 · 7 · 13 · 23.

(a) Determine gcd(a, b).
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Solution. The greatest common divisor of these numbers is given by

gcd(a, b) = 3min{2,0} · 5min{3,1} · 7min{4,2} · 13min{1,2} · 23min{0,9}

= 30 · 51 · 72 · 131 · 230

= 5 · 72 · 13

(b) What is the smallest integer t such that a | ct and b | ct?

Solution. The answer is 9. Indeed, when t = 9, note that

ct = c9 = 39 · 59 · 79 · 139 · 239,

which is divisible by both a and b. For every integer t < 9, one has that 239 ∤ ct

because 9 ̸≤ t and thus b ∤ ct.

8. Suppose a ∈ Z and consider the statement P: “if 24 | a2 then 36 | a3”.

(a) Prove P.

(b) Prove or disprove the converse of P.

Solution.

(a) • [Solution 1.] Suppose that 24 | a2. Note that 12 | 24 and that 3 | 24, and
thus 12 | a2 and 3 | a2 by Transitivity of Divisibility. Because 3 is prime, it
follows from Euclid’s Lemma that 3 | a. Now 12 | a2 and 3 | a, so it follows
that (12 · 3) | a3. Hence 36 | a3 as desired.

• [Solution 2]. Note that the prime factorisation of 24 is 23 · 31. Hence the
prime factorization of a must include at least 2 and 3 in its list of prime
factors,

a = 2k · 3ℓ · pα3
3 · · · pαn

n ,

where k, ℓ ≥ 1. Now,

a3 = 23k · 33ℓ · p3α3
3 · · · p3αn

n

= (23 · 33) · 23(k−1) · 33(ℓ−1) · p3α3
3 · · · p3αn

n

= 36 · 6 · 23(k−1) · 33(ℓ−1) · p3α3
3 · · · p3αn

n

and thus 36 | a3.

(b) The converse of P is“If 36 | a3 then 24 | a2.” The converse of P is false. Indeed,
consider a = 6. Then a3 = 62 · 6 = 36 · 6 so 36 | a3. But a2 = 36 and 24 ∤ 36 so
24 ∤ a2.

9. Suppose a and b are positive integers and let c be an integer such that gcd(a, b) | c. Prove
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that there exists a unique integer solution (x′, y′) to the linear Diophantine Equation

ax + by = c

such that 0 ≤ x′ < b
gcd(a,b) .

Solution.

Proof. By the Linear Diophantine Equaion Theorem, there exists an integer solution
(x0, y0) because gcd(a, b) | c. By the Division Algorithm, because b

gcd(a,b) > 0, there
exists a unique choice of integers q, r ∈ Z such that

x0 = q
b

gcd(a, b)
+ r and 0 ≤ r <

b
gcd(a, b)

.

Now define x′ = x0 − q b
gcd(a,b) and y′ = y0 + q a

gcd(a,b) . By the Linear Diophantine
Equation Theorem, it holds that (x′, y′) is also a solution to this equation. Note that

x′ = r

and thus 0 ≤ x′ < b
gcd(a,b) . It remians to prove that this solution is unique.

To prove that (x′, y′) is unique, let (x′′, y′′) be another solution to the Diophantine
equation such that 0 ≤ x′′ < b

gcd(a,b) . By the Linear Diophantine Equation Theorem,
there exists an integer n ∈ Z such that

x′′ = x0 − n
b

gcd(a, b)
y′′ = y0 + n

a
gcd(a, b)

.

In particular, note that

x0 =
b

gcd(a, b)
+ x′′.

By the Division Algorithm, it must be the case that m = q and x′′ = x′. This completes
the proof.

10. Suppose that Canada Post issued 49¢ and 53¢ stamps. How many different ways could you
purchase exactly $100 worth of these kinds of stamps?

Solution. We need to find all solutions to the linear Diophantine equation

49x + 53y = 10000. (∗)

We can use the Extended Euclidean Algorithm to compute gcd(49, 53), which pro-
duces the following table:
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x y r
R1 1 0 53
R2 0 1 49

R1 − 1R2 = R3 1 −1 4
R2 − 12R3 = R4 −12 13 1

From the table above, we see that gcd(53, 49) = 1 and moreover that

53(−12) + 49(13) = 1.

Multiplying this by 10000, we see that one solution to the equation (∗) is

x0 = 130000 and y0 = −120000

and sll other solutions are of the form

x = x0 − 53n and y = y0 + 49n

for some n ∈ Z. The set of valid solutions having x ≥ 0 and y ≥ 0 is described as

S =
{(

x0 − 53n, y0 + 49n
)

: n ∈ Z, x0 − 53n ≥ 0 and y0 + 49n ≥ 0
}

.

(These are the solutions where the numbers of stamps of both types are both positive.)
Note that

120000 = 49 · 2449 − 1

and thus

y0 + 49 · 2449 = −120000 + 49 · 2449
= 1

and also

x0 − 53 · 2449 = 130000 − 129797
= 203.

Hence, one solution (x1, y1) having x1 ≥ 0 and y1 ≥ 0 is

x1 = 203 and y0 = 1.

All valid solutions are of the form (203 − 53n, 1 + 49n) for some integer n such that
203 − 53n ≥ 0 and 1 + 49n ≥ 0. The valid soltions are therefore

(203, 1)
(203 − 53, 1 + 49) =(150, 50)

(203 − 2 · 53, 1 + 2 · 49) =(97, 99)
(203 − 3 · 53, 1 + 3 · 49) =(44, 108).
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Hence there are only four ways to purchase exactly $100 worth of 49¢ and 53¢ stamps.
The solution set we are interested in is given by

S = {(x, y) ∈ Z2 : x ≥ 0 and y ≥ 0 and 49x + 53y = 10000}
= {(203 − 53n, 1 + 49n) : n ∈ Z and 203 − 53n ≥ 0 and 1 + 49n ≥ 0}
= {(203, 1), (150, 50), (97, 99), (44, 108)},

which contains only 4 elements.

11. Let n be a positive integer. Prove the following statements.

(a) If n is odd, then n2 ≡ 1 (mod 8).

Solution. Let n be an odd integer. Then either n ≡ 1 (mod 8), n ≡ 3 (mod 8),
n ≡ 5 (mod 8), or n ≡ 7 (mod 8). Let’s consider each case separately.

• If n ≡ 1 (mod 8), then n2 ≡ 12 ≡ 1 (mod 8).

• If n ≡ 3 (mod 8), then n2 ≡ 32 ≡ 9 ≡ 1 (mod 8).

• If n ≡ 5 (mod 8), then n2 ≡ 52 ≡ 25 ≡ 8 · 3 + 1 ≡ 1 (mod 8).

• If n ≡ 7 (mod 8), then n2 ≡ 72 ≡ 49 ≡ 8 · 6 + 1 ≡ 1 (mod 8).

In every case, it holds that n2 ≡ 1 (mod 8).

(b) If n2 ̸≡ 1 (mod 3), then n ≡ 0 (mod 3).

Solution. We prove the converse, which states: “If n ̸≡ 0 (mod 3), then n2 ≡ 1
(mod 3)”.

Proof. Suppose that n ̸≡ 0 (mod 3). Then either n ≡ 1 (mod 3) or n ≡ 2
(mod 3). We consider both cases separately.

• If n ≡ 1 (mod 3), then n2 ≡ 12 ≡ 1 (mod 3).

• If n ≡ 2 (mod 3), then n2 ≡ 4 ≡ 3 + 1 ≡ 1 (mod 3).

In either case, it holds that n2 ≡ 1 (mod 3).

12. Solve the equation [9][x] = [5] in Z43.

Solution. We can use the Extended Euclidean Algorithm to compute gcd(43, 9),
which produces the following table:
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x y r
R1 1 0 43
R2 0 1 9

R1 − 4R2 = R3 1 −4 7
R2 − R3 = R4 −1 5 2

R3 − 3R4 = R5 4 −19 1

From the table, we see that 43 · (4)− 9 · (19) = 1, and thus 9 · 19 = 43 · 4 − 1, which
implies that

9 · 19 ≡ −1 (mod 43).

Multiplyting this congruence by −5 yields

9 · (19 · (−5)) ≡ 5 (mod 43).

Note that

19 · (−5) ≡ −95 ≡ 3 · 43 − 95 ≡ 129 − 95 ≡ 34 (mod 43).

Hence, we have that

[19][34] = [19][19 · (−5)] = [5] in Z43.

Because gcd(9, 43) = 1, there is only one solution, so the is the only solution is [x] =
[34].

13. (a) Find the units digit of 601201620 (in base 10).

Solution. We need to find the remainder of 601201620 when divided by 10. Note
that 6012016 ≡ 6 (mod 10) and thus

601201620 ≡ 620 (mod 10).

Next, we prove by induction that, for all n ∈ N, it holds that 6n ≡ 6 (mod 10).
Indeed, this is true for the Base Case, because 61 ≡ 6 (mod 10). To prove the
Induction Step, let k ∈ N ans suppose that 6k ≡ 6 (mod 10). Then

6k+1 ≡ 6k · 6 ≡ 6 · 6 ≡ 36 ≡ 6 (mod 10).

By the Principle of Mathematical Induction, it holds that 6n ≡ 6 (mod 10) for
all n ∈ N. We may conclude that 620 ≡ 6 (mod 10) and thus the units digit of
601201620 is 6.

(b) Find the last two digits of 71942 in base 10.
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Solution. To find the last two digits, we need to find the remainder of 71942 when
divided by 100. Now, 72 = 49 and note thata

492 = (50 − 1)2 = 502 − 2 · 50 + 1
= 100 · 25 − 100 + 1
= 100 · 24 + 1

and thus 492 ≡ 1 (mod 100). Hence,

74 ≡ (49)2 ≡ 1 ≡ (mod 100).

Next, note that

1942 = 194 · 10 + 2
= (97 · 2) · (2 · 5) + 2
= 4k + 2

where k = 97 · 5. Hence,

71942 ≡ 74·97·5+2 ≡ (74)97·5 · 72 ≡ 1 · 49 ≡ 49 (mod 100).

Hence the last two digits of 71942 are 49.

aAlternatively, one may mulitply out to find that 492 = 2401.

14. Prove the following facts about the binomial coefficient.

(a) For all non-negative integers n, k ∈ Z, it holds that
(

n
k

)
∈ Z.

Solution. We prove by induction. For each non-negative integer n, let P(n) be

the statement that “For all non-negative integers k, it holds that
(

n
k

)
∈ Z.”

• Base case: By definition, one has (0
0) = 1 and (0

k) = 0 whenever k > 0. Thus
(0

k) is an integer for every non-negative integer k. Hence P(0) is true.

• Induction Step: Let m be a non-negative integer and assume that P(m) is
true. That is, assume that (m

ℓ ) is an integer for every non-negative integer ℓ.
We prove that (m+1

k ) is an integer for every non-negative integer k. Let
k ∈ Z be an arbitrary non-negative integer. There are two cases:

– If k < m + 1, then by Pascal’s Identity, it holds that(
m + 1

k

)
=

(
m
k

)
+

(
m

k + 1

)
,
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which is an integer, because (m
k ) and ( m

k+1) are integers by the Induction
Hypothesis.

– If k = m + 1, then (m+1
k ) = (m+1

m+1) = 1, which is an integer.

– If k > m + 1, then (m+1
k ) = 0 by definition, which is an integer.

In each case, we see that (m+1
k ) is an integer. Hence P(m + 1) is true.

By the principle of induction, it holds that (n
k) is an integer for all non-negative

integers n, k ∈ Z.

(b) Let p be a prime number. It holds that(
p
k

)
≡ 0 (mod p)

for all k ∈ {1, 2, . . . , p − 1}.

Solution.

Proof. Let k ∈ {1, 2, . . . , p − 1}. By definition, we have that(
p
k

)
=

p!
k!(p − k)!

,

and thus

p · (p − 1)! = p! = k!(p − k)!
(

p
k

)
= (1 · 2 · · · · · k)(1 · 2 · · · · · (p − k))

(
p
k

)
,

and thus p |
(
k!(p − k)!(p

k)
)
. Note also that

gcd(p, 1) = gcd(p, 2) = · · · = gcd(p, p − 1) = 1.

Because 1 ≤ k ≤ p − 1 and 1 ≤ p − k ≤ p − 1, it follows that

gcd
(

p, k!(p − k)!
)
= 1.

Because p |
(
k!(p − k)!(p

k)
)

and gcd
(

p, k!(p − k)!
)
= 1, it follows from Euclid’s

Lemma that

p |
(

p
k

)
.

This implies that (p
k) ≡ 0 (mod p).

15. Prove the following statements.
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(a) The sum of any three consecutive natural numbers is divisible by 3.

Solution. Symbolically, we can express this statement as:

∀n ∈ Z, 3 |
(
n + (n + 1) + (n + 2)

)
Proof. Let n ∈ Z be arbitrary. Now,

n + (n + 1) + (n + 2) ≡ 3n + 3 (mod 3)
≡ 3(n + 1) (mod 3)
≡ 0 (mod 3),

and thus 3 |
(
n + (n + 1) + (n + 2)

)
.

(b) The sum of any four consecutive natural numbers is NOT divisible by 4.

Solution. Symbolically, we can express this statement as:

∀n ∈ Z, 4 ∤
(
n + (n + 1) + (n + 2) + (n + 3)

)
Proof. Let n ∈ Z be arbitrary. Now,

n + (n + 1) + (n + 2) + (n + 3) ≡ 4n + 1 + 2 + 3 (mod 4)
≡ 4n + 7 (mod 4)
≡ 7 (mod 4),

but 4 ∤ 7 and thus 4 ∤
(
n + (n + 1) + (n + 2) + (n + 3)

)
.

16. Let x ∈ Z. Prove that 4x2 + x + 3 is not divisible by 5.

Solution. We only need to consider x ∈ {0, 1, 2, 3, 4}. Construct the following table:

x 0 1 2 3 4
x2 0 1 4 9 16

x2 (mod 5) 0 1 4 4 1
4x2 (mod 5) 0 4 1 1 4

4x2 + x + 3 (mod 5) 3 3 1 2 1

Note that 4x2 + x + 3 ̸≡ 0 (mod 5) for each x, and thus 4x2 + x + 3 is never divisible
by 5.

17. Let p be a prime number. Prove the following statement:

There exists an integer n ∈ Z such that n3 = p + 8 ⇐⇒ p = 19.
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Solution. If p = 19, then p + 8 = 19 + 8 = 27 and we may choose n = 3 such that
n3 = 27. Conversely, suppose that there exists an integer n ∈ Z such that n3 = p + 8.
It follows that n3 − 8 = p and thus

(n − 2)(n2 + 2n + 4) = p.

We first prove that n2 + 2n + 4 > 1.

• If n ≥ 0, then n2 + 2n + 4 ≥ 4.

• If n = −1, then n2 + 2n + 4 = 3.

• If n < −1, then n ≤ −2 which implies n2 ≥ −2n and thus n2 + 2n ≥ 0. Hence
n2 + 2n + 4 ≥ 4.

In each case, we have n2 + 2n + 4 > 1. Because p is prime, its only poisitive divisors
are 1 and p, so it must therefore be the case that

n − 2 = 1 and n2 + 2n + 4 = p.

That is, n = 3 and p = n2 + 2n + 4 = 9 + 6 + 4 = 19.

18. Let a, b ∈ Z and let p be a prime number. Prove that (a + b)p ≡ ap + bp (mod p).

Solution. There are two ways to prove this.

• Proof 1. Using the Binomial Theorem, we have

(a + b)p =
p

∑
k=0

(
p
k

)
ap−kbk

=

(
p
0

)
apb0 +

(
p
1

)
ap−1b1 + · · ·+

(
p

p − 1

)
a1bp−1 +

(
p
p

)
a0bp

= ap +

(
p
1

)
ap−1b1 + · · ·+

(
p

p − 1

)
a1bp−1 + bp.

However, from problem 14b we see that(
p
k

)
≡ 0 (mod p)

for every k ∈ {1, 2, . . . , p − 1}, and thus

(a + b)p ≡ ap +

(
p
1

)
ap−1b1 + · · ·+

(
p

p − 1

)
a1bp−1 + bp (mod p)

≡ ap + 0 + · · ·+ 0 + bp (mod p)
≡ ap + bp (mod p).
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• Proof 2. From the Corollary to Fermat’s Little Theorem, it holds that

ap ≡ a (mod p), bp ≡ b (mod p), and (a + b)p ≡ a + b (mod p).

Thus
(a + b)p ≡ a + b ≡ ap + bp (mod p).
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