MATH 135 — Fall 2021 Practice Problems – Chapters 9 and 10

Mark Girard

December 3, 2021

Topics: Complex numbers and polynomials.

1. Express the following complex numbers in **standard form**. (That is, find $x, y \in \mathbb{R}$ such that z = x + yi.)

(a)
$$\frac{1+i}{1-i}$$

(b) $\frac{3+i}{2-5i}$
(c) $\frac{(\sqrt{3}+i)^2}{(\sqrt{3}-i)(1+\sqrt{3}i)}$
(d) $(i-1)^4$

- 2. Express the following complex numbers in **polar form**. (That is, find real numbers $r, \theta \in \mathbb{R}$ such that $z = r(\cos \theta + i \sin \theta), 0 \le r$, and $0 \le \theta < 2\pi$.)
 - (a) $\frac{1+i}{1-i}$ (b) $\frac{5+i}{2i-3}$ (c) $(i-\sqrt{3})^7$
- 3. Identify and sketch the set of points in the complex plane satisfying:
 - (a) |z| = 1
 - (b) $|z i 1| \le 2$
 - (c) |z-1| < |z|
- 4. Prove for all integers $n \in \mathbb{Z}$ that $\operatorname{Re}((\sqrt{3}+i)^n) = 0$ if and only if $n \equiv 3 \pmod{6}$
- 5. Prove that, for all complex numbers $z \in \mathbb{C}$,

$$|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}|z|.$$

- 6. Let $f(x) = x^3 7x^2 + 17x 15$.
 - (a) Show that f(2+i) = 0.
 - (b) Use the fact that 2 + i is a root of f(x) to completely factor f(x) in both $\mathbb{C}[x]$ and $\mathbb{R}[x]$.
- 7. Let $f(x) = x^4 3x^3 + 5x^2 3x + 4$. Verify that f(i) = 0 and use this fact to completely factorize f(x) in $\mathbb{R}[x]$ and $\mathbb{C}[x]$.
- 8. Let $z, w \in \mathbb{C}$. Prove that |z + iw| = |z iw| if and only if $z\overline{w} \in \mathbb{R}$.