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Practice Problems (Solutions)– Chapters 9 and 10

Mark Girard

December 3, 2021

Topics: Complex numbers and polynomials.

1. Express the following complex numbers in standard form. (That is, find x, y ∈ R such that
z = x + yi.)

(a)
1 + i
1 − i

Solution. Note that we can multiply the top and bottom by the conjugate of 1− i
to find

1 + i
1 − i

=
1 + i
1 − i

1 + i
1 + i

=
(1 + i)2

|1 + i|2 =
(1 − 1) + i(1 + 1)

12 + 12 =
0 + 2i

2
= i.

Re

Im

i

(b)
3 + i

2 − 5i

Solution. Note that we can multiply the top and bottom by the conjugate of
2 − 5i to find

3 + i
2 − 5i

=
3 + i
2 − 5i

2 + 5i
2 + 5i

=
(3 + i)(2 + 5i)

|2 − 5i|2

=
(3 · 2 − 1 · 5) + i(3 · 5 + 1 · 2)

22 + 52 =
(6 − 5) + i(15 + 2)

4 + 25
=

1
29

+
17
29

i.
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Im

1
29 +

17
29 i

(c)
(
√

3 + i)2

(
√

3 − i)(1 +
√

3i)

Solution. Note that we can multiply out the denominator to find

(
√

3 − i)(1 +
√

3i) = (
√

3 +
√

3) + (3 − 1)i = 2
√

3 + 2i

= 2(
√

3 + i)

and thus

(
√

3 + i)2

(
√

3 − i)(1 +
√

3i)
=

(
√

3 + i)2

2(
√

3 + i)

=

√
3 + i
2

=

√
3

2
+

1
2

i.

Re

Im

√
3

2 + i
2

(d) (i − 1)4

Solution. Note that i − 1 can be expressed in polar form as

i − 1 =
√

2
(
− 1√

2
+

1√
2

i
)
=

√
2 cis

(
3π

4

)
,

2



and thus

(i− 1)4 =
√

2
4

cis
(

3π

4

)4

= 4 cis (3π) = 4
(
cos(3π)+ i sin(3π)) = 4(−1+ 0i) = −4,

hence (i − 1)4 = −4

Re

Im

−4

2. Express the following complex numbers in polar form. (That is, find real numbers r, θ ∈ R

such that z = r(cos θ + i sin θ), 0 ≤ r, and 0 ≤ θ < 2π.)

(a)
1 + i
1 − i

Solution. From 1a we have that 1+i
1−i = i, which in polar form is

i = cis
(π

2

)
= cos

(π

2

)
+ i sin

(π

2

)
.

Re

Im

i π
2

(b)
5 + i

2i − 3
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Solution. Note that

5 + i
2i − 3

=
5 + i

2i − 3
−2i − 3
−2i − 3

=
(5 + i)(−2i − 3)

|2i − 3|2

=
(−15 + 2) + (−10 − 3)i

22 + 32

=
13 + 13i

4 + 9

=
13(1 + i)

13
= 1 + i

and in polar form this is

1 + i =
√

2
(

1√
2
+

1√
2

i
)
=

√
2 cis

(π

4

)
.

Re

Im
√

2 cis
(

π
4

)

π
4

(c) (i −
√

3)7

Solution. Note that we can express i −
√

3 in polar form as

i −
√

3 = 2

(
−
√

3
2

+
i
2

)

= 2
(

cos
(

5π

6

)
+ i sin

(
5π

6

))
= 2 cis

(
5π

6

)
.
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Hence, by De Moivre’s Theorem,

(i −
√

3)7 =

(
2 cis

(
5π

6

))7

= 27 cis
(

7
5π

6

)
= 128 cis

(
35π

6

)
= 128 cis

(
11π

6
+ 4π

)
= 128 cis

(
11π

6

)
= 128

(
cos

(
11π

6

)
+ i sin

(
11π

6

))
Note that in standard form this is

128
(

cos
(

11π

6

)
+ i sin

(
11π

6

))
= 128

(√
3

2
− 1

2

)
= 64

√
3 + 64i.

Re

Im

128 cis
( 11π

6

)
11π

6

3. Identify and sketch the set of points in the complex plane satisfying:

(a) |z| = 1

Solution. For a complex number in Cartesian coordinates z = x + yi, note that
|z| =

√
x2 + y2 = 1. Hence a number satisfied |z| = 1 if and only if x2 + y2 = 1.

This equation describes the unit circle in the complex plane that is centered at the
origin. This can be visualized as in the following figure.
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Im

1

i

−i

−1

(b) |z − i − 1| ≤ 2

Solution. Let z = x + yi be the standard form of a complex number. Note that

|z − i − 1|2 = |(x − 1) + (y − 1)i|2 = (x − 1)2 + (y − 1)2.

Thus z satisfies the inequality |z − i − 1| ≤ 2 if and only if (x− 1)2 +(y− 1)2 ≤ 4.
The set of points satisfying (x − 1)2 + (y − 1)2 ≤ 4 form a filled-in disk centered
at (1, 1) and having radius 2. This can be visualized as in the following figure.

Re

Im

(c) |z − 1| < |z|

Solution. This inequality is equivalent to 0 < |z|2 − |z − 1|2. For a complex
number Cartesian coordinates z = x + yi, note that

|z|2 − |z − 1|2 = x2 + y2 −
(
(x − 1)2 + y2)

= 2x − 1,

and thus z satisfies 0 < |z|2 − |z − 1|2 if and only if 0 < 2x − 1, or equivalently
x > 1

2 . Thus, the region satisfying this inequality is the region of all point that lie
to the right of the line defined by the equation x = 1

2 . This can be visualized as
in the following figure.
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4. Prove for all integers n ∈ Z that Re((
√

3 + i)n) = 0 if and only if n ≡ 3 (mod 6)

Solution. Note that we can express
√

3 + i in polar form as

√
3 + i = 2 cis

(π

6

)
.

Let n ∈ Z be arbitrary. Using De Moivre’s Theorem, we find that

Re((
√

3 + i)n) = Re
((

2 cis
(π

6

))n)
= 2n Re

(
cis
(nπ

6

))
= 2n cos

(nπ

6

)
.

Moreover, recall that cos(θ) = 0 if and only if θ = π
2 + kπ for some integer k ∈ Z.

Hence,

Re((
√

3 + i)n) = 0 ⇐⇒ 2n cos
(nπ

6

)
= 0

⇐⇒ cos
(nπ

6

)
= 0

⇐⇒ ∃k ∈ Z,
nπ

6
=

π

2
+ kπ

⇐⇒ ∃k ∈ Z, nπ = 3π + 6kπ

⇐⇒ ∃k ∈ Z, n = 3 + 6k
⇐⇒ n ≡ 3 (mod 6),

as desired.

5. Prove that, for all complex numbers z ∈ C,

|Re(z)|+ | Im(z)| ≤
√

2|z|.

Solution.

Proof. Let z ∈ C and let x, y ∈ R such that z = x + yi. Then the real and imaginary
parts of z are

Re(z) = x and Im(z) = y.
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Now, note that x2 = |x|2 and y2 = |y|2, and thus

(|Re(z)|+ | Im(z)|)2 = (|x|+ |y|)2

= |x|2 + 2|x||y|+ |y|2

≤ |x|2 + 2|x||y|+ |y|2 + (|x| − |y|)2 [because 0 ≤ (|x| − |y|)2]

= 2|x|2 + 2|y|2 + 2|x||y| − 2|x||y|
= 2(|x|2 + |y|2)
= 2(x2 + y2)

= 2|z|2.

Hence we find that (|Re(z)|+ | Im(z)|)2 ≤ 2|z|2. Taking the square root of both sides
yields

|Re(z)|+ | Im(z)| ≤
√

2|z|.

6. Let f (x) = x3 − 7x2 + 17x − 15.

(a) Show that f (2 + i) = 0.

Solution. Using the binomial theorem, we have

(2 + i)3 = 23 + 3 · 22 · i + 3 · 2 · i2 + i3 = 8 + 12i − 6 − i = 2 + 11i

and
(2 + i)2 = 22 + 2 · 2 · i + i2 = 2 + 4i − 1 = 1 + 4i.

Hence

f (2 + i) = (2 + i)3 − 7(2 + i)2 + 17(2 + i)− 15
= (2 + 11i)− 7 · (1 + 4i) + 17(2 + i)− 15
= 2 + 11i − 7 − 28i + 24 + 17i − 15
= (2 − 7 + 24 − 15) + (11 − 28 + 17)i
= 0 + 0i = 0.

(b) Use the fact that 2 + i is a root of f (x) to completely factor f (x) in both C[x] and R[x].

Solution. Because 2 + i is a root of f (x) and f (x) ∈ R[x], we know that its
conjugate 2 + i = 2 − i is also a root of f (x). Hence, the polynomial(

x − (2 + i)
)(

x − (2 − i)
)
= x2 − 4x + 5
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is a factor of f (x). Performing polynomial long division, we find that

x − 3
x2 − 4x + 5

)
x3 − 7x2 + 17x − 15

− x3 + 4x2 − 5x
− 3x2 + 12x − 15

3x2 − 12x + 15
0

and thus f (x) = x3 − 7x2 + 17x − 15 can be factored as

f (x) = (x2 − 4x + 5)(x − 3).

Note that x2 − 4x + 5 is irreducible in R[x], so this is the complete factorization
of f (x) in R[x]. Meanwhile, the complete factorization of f (x) in C[x] is

f (x) =
(
x − (2 + i)

)(
x − (2 − i)

)(
x − 3

)
.

The location of the roots in the complex plane are visualized in the figure below.

Re

Im

−3

2 + i

2 − i

7. Let f (x) = x4 − 3x3 + 5x2 − 3x + 4. Verify that f (i) = 0 and use this fact to completely
factorize f (x) in R[x] and C[x].

Solution. Note that i4 = −1, i3 = −i, and i2 − 1, hence

f (i) = 1 + 3i − 5 − 3i + 4 = 0 + 0i = 0.

Hence i is a root of f (x) and it follows that −i is also a root of f (x). Thus

(x − i)(x + i) = x2 + 1
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is a divisor of f (x). We can use polynomial long division to find that

x2 − 3x + 4
x2 + 1

)
x4 − 3x3 + 5x2 − 3x + 4

− x4 − x2

− 3x3 + 4x2 − 3x
3x3 + 3x

4x2 + 4
− 4x2 − 4

0

and thus we can factor f (x) as

f (x) = (x2 + 1)(x2 − 3x + 4).

It remains to factor x2 − 3x + 4. Note that 32 − 4 · 4 = 9 − 16 = −7 < 0, and thus this
polynomial has no real roots. However, we can still use the quadratic equation to find
the complex roots. The roots are of the form

x =
3 ±

√
32 − 4 · 4
2

=
3 ±

√
−7

2
=

3 ± i
√

7
2

.

So all of the roots of f (x) are

i, −i,
3 + i

√
7

2
, and

3 − i
√

7
2

.

Hence the factorization of f (x) is C[x] is

f (x) = (x − i)(x + i)

(
x − 3 + i

√
7

2

)(
x − 3 − i

√
7

2

)

while the factorization of f (x) in R[x] is

f (x) = (x2 + 1)(x2 − 3x + 4).

The location of the roots in the complex plane are visualized in the figure below.

Re

Im

−i

i

3−i
√

7
2

3+i
√

7
2
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8. Let z, w ∈ C. Prove that |z + iw| = |z − iw| if and only if zw ∈ R.

Solution. First note that zw = zw, and so by Properties of the Conjugate (PCJ) we
have

zw − zw = 2i Im(zw).

and thus
i(zw − zw) = −2 Im(zw).

Note that iw = −iw and thus z + iw = z − iw by PCJ, and by the Properties of the
Modulus (PM) we have

|z + iw|2 = (z + iw)(z + iw) = (z + iw)(z − iw)

= zz + izw − izw + ww

= |z|2 + |w|2 − i(zw − zw)

= |z|2 + |w|2 + 2 Im(zw).

Similarly, note that z − iw = z + iw and thus

|z − iw|2 = (z − iw)(z − iw) = (z − iw)(z + iw)

= zz − izw + izw + ww

= |z|2 + |w|2 + i(zw − zw)

= |z|2 + |w|2 − 2 Im(zw).

Hence |z + iw| = |z − iw| is satisfied if and only if Im(zw) = − Im(zw) which occurs
if and only if Im(zw) = 0, which is equivalent to zw ∈ R.
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