MATH 135 — Fall 2021
Practice Problems (Solutions)— Chapters 9 and 10

Mark Girard

December 3, 2021

Topics: Complex numbers and polynomials.

1. Express the following complex numbers in standard form. (That is, find x,y € R such that
z=x+yi.)

1+
1—i

(a)
Solution. Note that we can multiply the top and bottom by the conjugate of 1 —i
to find

14+i 1+il4i (140> (1-1)+i(1+1) 0+2i
1—i 1—il+4+i |1+i? 12 +12 2
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b) 2 —5i
Solution. Note that we can multiply the top and bottom by the conjugate of
2 — 5i to find
3+i  3+i2+5i (3+1)(2+5i)
2—-5/ 2-5i2+5i  [2-5if
_(3:2-1-5+iB-5+1-2)  (6-5)+i(15+2) 1 Ez’
B 22 + 52 B 4425 29 297
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(V3 —i)(1+ V/3i)

Solution. Note that we can multiply out the denominator to find

(V3—i)(1+V3i) = (V3+V3) + (3 —1)i =2v3+2i
=2(V3+1)

and thus
(V3+i?  (V3+i)?
(V3—i)(1++3i) 2(V/3+i)
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(d) (i—1)*
Solution. Note that i — 1 can be expressed in polar form as
1 1 3
i—1:ﬁ<—+i> = V2dis <>
V2 V2 4



and thus

(i—1)* = \@4 cis (?)4 = 4cis (371) = 4(cos(37) +isin(37)) = 4(—1+0i) = —4,

hence (i —1)* = —4
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2. Express the following complex numbers in polar form. (That is, find real numbers 7,6 € R
such that z = r(cosf +isinf),0 < r,and 0 < 0 < 271.)

1+1
@) 77—
Solution. From 1a we have that %—Jj; = i, which in polar form is
. . (TT T .. 7T
1 =cis (E> = COs (§> +1sin <§) .
Im
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(b) 2i—3



Solution. Note that

54+4i 5+i—-2i—3 (5+i)(—2i—3)

2i—3 2—-3-2i—3 |2i — 3|2

(=15+2) + (—10—3)i

22 +3

13 4+ 13i

449

13(1 +1)
13

=141
and in polar form this is
1+i= \f2<1+1i> = V2cis <E>
V2 V2 4
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Solution. Note that we can express i — /3 in polar form as

i—\@:2< V3 i)

2 "2
=2 | cos 5—71 +isin 5—”
- 6 6
5
=2cis| — | .
o ()



Hence, by De Moivre’s Theorem,

- (7))
|

6
5
— 27 cis (76”
35
— 128 cis <6”>
= 128 cis <1167T + 47r>
11
— 128 cis (6”>
—128 <Cos <12”> +isin (116”»

Note that in standard form this is

128 <cos (116”> +isin <116”>> — 128 (\f _ ;) — 64v/3 + 64i.
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3. Identify and sketch the set of points in the complex plane satisfying:
(@) |z| =1

Solution. For a complex number in Cartesian coordinates z = x + yi, note that
z| = \/x2 + y2 = 1. Hence a number satisfied |z| = 1 if and only if x> + y? = 1.
This equation describes the unit circle in the complex plane that is centered at the
origin. This can be visualized as in the following figure.



b) z—-i—-1] <2
Solution. Let z = x + yi be the standard form of a complex number. Note that
2= i =1 = =)+ (= DI = (= D2+ (=17,
Thus z satisfies the inequality |z — i — 1| < 2ifand only if (x — 1)+ (y —1)? < 4.

The set of points satisfying (x — 1)2 + (y — 1)? < 4 form a filled-in disk centered
at (1,1) and having radius 2. This can be visualized as in the following figure.

(©) [z =1 < |2]

Solution. This inequality is equivalent to 0 < |z|* — |z—1|*>. For a complex
number Cartesian coordinates z = x + yi, note that

2—]2—1]2:x2+y2— ((x—1)2+y2)

=2x—1,

2]

and thus z satisfies 0 < |z|* — |z — 1/* if and only if 0 < 2x — 1, or equivalently
x > 3. Thus, the region satisfying this inequality is the region of all point that lie
to the right of the line defined by the equation x = 1. This can be visualized as

in the following figure.
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4. Prove for all integers n € Z that Re((v/3 +i)") = 0 if and only if n = 3 (mod 6)

Solution. Note that we can express v/3 + i in polar form as

\@+i:2cis(%>.

Let n € Z be arbitrary. Using De Moivre’s Theorem, we find that
Re((v/341)") = Re ((2 cis (g))n) =2"Re (Cis (%)) = 2" cos (%) .

Moreover, recall that cos(f) = 0 if and only if § = Z + k7t for some integer k € Z.

Hence,
Re((V3+i)") =0 <= 2"cos (%) =0
nri
<— cos (?> =0
nmw 7
3 — = —
<— dk e Z, G 2+k7r
< dke Z,nm =31+ 6k
+— dkeZ,n=3+6k
<= n=3 (mod6),
as desired.

5. Prove that, for all complex numbers z € C,
|Re(z)| + | Im(2)| < V2[z|.

Solution.

Proof. Let z € C and let x,y € R such that z = x + yi. Then the real and imaginary
parts of z are
Re(z) =x  and Im(z) = y.



Now, note that x?> = |x|?> and y? = |y|?, and thus

(I Re(z)| + [Tm(z)])* = (|x] + [y])*
= |x? +2[x|ly| + [y
< x* +20xlly| + [y* + (Ix] = y])* [because 0 < (|x| - |y|)?]
= 20x|* + 2[y|* +2|x[ly| — 2|x[]y]
=2(]x|* + ly*)
=2(x* +y%)
= 2|z|%
Hence we find that (| Re(z)| 4 |Im(z)|)? < 2|z|2. Taking the square root of both sides

yields
|Re(z)| + | Im(z)| < V2[z|.

6. Let f(x) = x% — 7x2 +17x — 15.
(a) Show that f(2+1i) = 0.

Solution. Using the binomial theorem, we have
2+i)P=22+3-22i+3.2- 4+ =8+12—6—-i=2+11i

and
(2+i)?=2242-2-i+?=2+4i—1=1+4i
Hence
f+i)=02+i)-7Q+i)>+172+1i) — 15
= (24 11i) = 7- (1 +4i) +17(2 +i) — 15
=24+ 11i—7—28i+24+17i — 15
=(2-7+24—15) + (11 — 28 +17)i
=0+ 0i = 0.

(b) Use the fact that 2 + i is a root of f(x) to completely factor f(x) in both C[x] and R[x].

Solution. Because 2 + i is a root of f(x) and f(x) € R[x|, we know that its
conjugate 2 + i = 2 — i is also a root of f(x). Hence, the polynomial

(x—(2+i)(x—(2—i) =x*—4x+5



is a factor of f(x). Performing polynomial long division, we find that

x —3

x> —4x+5) x°—7x>+17x—15
—x3+4x% —5x

—3x24+12x—15

3x2 —12x + 15

0

and thus f(x) = x® — 7x? + 17x — 15 can be factored as
f(x) = (x* —4x +5)(x — 3).

Note that x?> — 4x + 5 is irreducible in R[x], so this is the complete factorization
of f(x) in R[x]. Meanwhile, the complete factorization of f(x) in C[x] is

Fx) = (x— @+9) (r— @2~ ) (x-3).

The location of the roots in the complex plane are visualized in the figure below.
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7. Let f(x) = x* — 3x® + 5x2 — 3x + 4. Verify that f(i) = 0 and use this fact to completely
factorize f(x) in R[x] and C|[x].

Solution. Note that i* = —1,® = —i, and i — 1, hence
Fi)=1+3i—5-3i+4=0+0i = 0.
Hence i is a root of f(x) and it follows that —i is also a root of f(x). Thus

(x —i)(x+i) =x*>+1



is a divisor of f(x). We can use polynomial long division to find that

x2—3x+4
x2+1) x*—3x3+5x* —3x+4
—x* — x?
—3x3 +4x% — 3x
3x3 + 3x
4x? +4
— 4x? —14
0

and thus we can factor f(x) as
flx) = (x®+1)(x*> —3x +4).

It remains to factor x2 — 3x + 4. Note that32 —4-4 =9 — 16 = —7 < 0, and thus this
polynomial has no real roots. However, we can still use the quadratic equation to find
the complex roots. The roots are of the form

x_3i\/32—4-4_3i\/—7_3ii\ﬁ
B 2 2 2

So all of the roots of f(x) are

3407 3—iV7
2 2

i, —i,
Hence the factorization of f(x) is C[x] is

() = (x— ) (x +i) <x— 3*;”) (x— 3‘5”)

while the factorization of f(x) in R[x] is

flx) = (x®+1)(x* —3x +4).
The location of the roots in the complex plane are visualized in the figure below.
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8. Letz,w € C. Prove that |z + iw| = |z — iw| if and only if zw € R.

Solution. First note that zw = zZw, and so by Properties of the Conjugate (PCJ]) we
have
zw — zw = 2i Im(zw).

and thus
i(zw — zw) = —2Im(zw).

Note that iw = —iw and thus z + iw = z — iw by PCJ, and by the Properties of the
Modulus (PM) we have
|z 4 iw]* = (z + iw) (z + iw) = (z + iw) (Z — i©)
= 2z +1Zw — 1zZW + Www
= |z)* + |w|* — i(zW — Zw)

= |z]* + |w|* + 2 Im(z@).
Similarly, note that z — iw = z + iw and thus

1z —iw|* = (z — iw)(z — iw) = (z — iw)(Z+ D)
= zZ —izw + izW + Www
= |z)* + |w|* + i(z® — Zw)
= |z]* + |w|* — 2Im(z@).

Hence |z + iw| = |z — iw| is satisfied if and only if Im(zw) = — Im(zw) which occurs
if and only if Im(zw) = 0, which is equivalent to zw € R.
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