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This document contains some extra notes and practice problems related to cryptography and RSA
encryption.

RSA encryption

RSA encryption

• Bob’s set up.

– Bob picks distinct primes p and q and calculates n = pq.

– Bob chooses numbers e and d such that ed ≡ 1 (mod (p − 1)(q − 1)).

– Bob publishes his public key (n, e) and keeps his private key (n, d) secret.

• Alice picks a message, then encrypts and sends the encrypted message.

– Alice wants to send a message to Bob using his public key (n, e).

– Alice picks a message M ∈ {0, 1, 2, . . . , n − 1}.

– Alice encrypts the message by solving for the remainder C when Me is divided
by n:

C ≡ Me (mod n)

– Alice sends the ciphertext (encrypted message) C to Bob.

• Bob receives and recovers the message.

– Bob receives the ciphertext C from Alice.

– Bob uses private key (n, d) to decrypt the message by solving for the remainder
R when dividing Cd by n:

R ≡ Cd (mod n)

– Bob perfectly recovers the message R = M.

Note that R ≡ Cd ≡ (Me)d ≡ Med (mod p).
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The fact that Bob can perfectly recover Alice’s message by decrypting the ciphertext is a con-
sequence of the following theorem.

Theorem. Suppose p and q are distinct prime numbers and define n = pq. Suppose e, d ∈ Z are
integers such that

ed ≡ 1 (mod (p − 1)(q − 1)).

For every M ∈ {0, 1, 2, . . . , n − 1}, it holds that

Med ≡ M (mod n).

Proof. Because ed ≡ 1 (mod (p − 1)(q − 1)), by definition of modular congruence there exists an
integer k ∈ Z such that

ed = 1 + k(p − 1)(q − 1).

Let R ∈ {0, 1, 2, . . . , n − 1} be the remainder of Mde when dividing by n. That is,

R ≡ Med (mod pq),

where n = pq. Because p and q are coprime, by Splitting the Modulus this is equivalent to{
R ≡ Med (mod p)

R ≡ Med (mod q).

(1)

(2)

We now prove that R ≡ M (mod p). There are two cases to consider.

Case 1: Suppose p ∤ M. By Fermat’s Little Theorem, it follows that Mp−1 ≡ 1 (mod p). Now

R ≡ Med (mod p) [from (1)]

≡ M1+k(p−1)(q−1) (mod p) [because ed = 1 + k(p − 1)(q − 1)]

≡ M · (Mp−1)k(q−1) (mod p)
≡ M · 1 (mod p) [by Fermat’s Little Theorem]

≡ M (mod p)

Case 1: Suppose p | M. Then M ≡ 0 (mod p), and thus

R ≡ Med ≡ 0ed ≡ 0 ≡ M (mod p).

In either case, we have proved that R ≡ M (mod p). This proves (1), which is to say, this proves
that R ≡ Med (mod p). The proof of (2) is similar. (That is, it is essentially the same proof to prove
that R ≡ Med (mod q).) So we can conclude that

R ≡ Med (mod p) and R ≡ Med (mod q).

By Splitting the Modulus, this is equivalent to

R ≡ Med (mod pq).

This completes the proof.
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Example

Suppose Alice and Bob choose to use the following encoding of letters of the alphabet into num-
bers:

“ ” 00
“A” 01
“B” 02
“C” 03

...
...

“Z” 26

The word “HELLO” would be encoded as the ten-digit number

0805121215

while the message “FROM ALICE” would be encoded as

06181513000112090305.

Bob constructs his public–private key pair by choosing primes p = 36809 and q = 77377, and
defines n = p · q = 2848169993. Bob chooses e = 5 and d = 4556889293. It can be checked (with a
computer) that these numbers satisfy

e · d ≡ 1 (mod 2848055808),

where (p − 1)(q − 1) = 2848055808. We now have:

Bob’s public key: Bob’s private key:
(2848169993, 5) (2848169993, 4556889293).

Alice chooses to send the message “HELLO” which corresponds to the plaintext M = 805121215.
Note that 0 ≤ M < n, so this is a valid message. Using a computer, we can solve the congruence

C ≡ M5 (mod n)

to find the ciphertext C = 751696144. Alice sends this resulting ciphertext to Bob, who then
decrypts it. Again, using a computer, we can check that Bob perfectly recovers the message R = M
when solving the congruence

R ≡ Cd (mod n),

and Bob finds R = 805121215, which he can decode to “HELLO”.

Remark. What if the message that Alice wants to send is bigger than n? She can split up her
message into multiple components and send each component separately. For example, to send
the message “FROM ALICE” using the public key above, Alice could send messages “FROM ”
and “ALICE” separately as

M1 = 0618151300 and M2 = 0112090305.

The corresponding ciphertexts for these messages can be determined to be

C1 = 1643373961 and C2 = 2028678151,

which Bob would receive and decrypt separately.
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Practice problems

1. Check (using a computer) that Bob perfectly recovers the messages M1 and M2 from the
ciphertexts C1 and C2 using his private key from the example above.

Solution. Defining R1 and R2 as the remainders of C1
d and C2

d when divided by n,
we can use a computer to check that R = 618151300 and R2 = 112090305, which are
equal to the messages M1 and M2, as desired.

Note. For the rest of the practice problems, you should try solving these by hand to make sure you
understand how to properly solve these types of congruences. It may be useful to use a computer
to check your work!

2. To generate a public–private key pair, Bob chooses primes p = 11 and q = 13 and computes
n = pq. He then chooses e = 23.

(a) What is Bob’s public key?
(b) What value for d should Bob choose to make his private key?

(c) Suppose Alice wishes to send the message M = 25 to Bob. What should her ciphertext
(encrypted message) be that she transmits for Bob to decrypt?

(d) Check to make sure that Cd ≡ M (mod n).

Solution.

(a) Bob’s public key is the pair (143, 23), because n = pq = 11 × 13 = 143.

(b) Bob needs to solve the congruence ed ≡ 1 (mod (p − 1)(q − 1)) for d. That is,
he needs to solve

23d ≡ 1 (mod 120),

where (p − 1)(q − 1) = 10 × 12 = 120. We can use the Extended Euclidean
Algorithm to compute gcd(120, 23), which produces the following table:

x y r
R1 1 0 120
R2 0 1 23

R1 − 5R2 = R3 1 −5 5
R2 − 4R3 = R4 −4 21 3
R3 − R4 = R5 5 −26 2
R4 − R5 = R6 −9 47 1

From the table, we see that 120 · (−9) + 23 · (47) = 1. It follows that

23 · 47 ≡ 1 (mod 120)

and thus Bob should choose d = 47. Bob’s private key is therefore (143, 47).
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(c) To find the ciphertext, Alice needs to solve the congruence C ≡ Md (mod n) for
the value C ∈ {0, 1, . . . , 142}, where n = pq = 143, d = 23, and M = 25. That is,
she needs to solve

C ≡ 2523 (mod 143).

Note that 23 = 16 + 4 + 3. We will compute the remainders of each of 2516, 254

and 253 when divided by 143. We have

252 ≡ 625 ≡ 4 · 143 + 53 ≡ 53 (mod 143)

so 252 ≡ 53 (mod 143). Now,

532 ≡ 2809 ≡ 19 · 143 + 92 ≡ 92 (mod 143)

so 254 ≡ (252)2 ≡ 532 ≡ 92 (mod 143). Continuing this process, we find

922 ≡ 8464 ≡ 59 · 143 + 27 ≡ 27 (mod 143)

so 258 ≡ (254)2 ≡ 922 ≡ 27 (mod 143), and once more to find

272 ≡ 729 ≡ 5 · 143 + 14 ≡ 14 (mod 143)

so 2516 ≡ (258)2 ≡ 272 ≡ 14 (mod 143). Moreover,

243 ≡ 252 · 25 ≡ 53 · 25 ≡ 1325 ≡ 9 · 143 + 38 ≡ 38 (mod 143).

Thus, 257 ≡ 254 · 253 ≡ 92 · 38 ≡ 3496 ≡ 24 · 143 + 64 ≡ 64 (mod 143), and
finally

2523 ≡ 2516 · 257 ≡ 14 · 64 ≡ 896 ≡ 6 · 143 + 38 ≡ 38 (mod 143).

Thus, Alice finds her ciphertext to be

C ≡ 2523 ≡ 38 (mod 143),

or C = 38. This is what she sends to Bob.

(a) We can check (using a computer) that Cd ≡ 3847 ≡ 25 (mod 143). Thus, Bob
successfully decrypts Alice’s message.

3. To generate a public–private key pair, Bob chooses primes p = 23 and q = 13 and computes
n = pq. He then chooses e = 283.

(a) What is Bob’s public key?

(b) What value of d should Bob choose to make his private key?

(c) Suppose Alice picks a message M ∈ {0, 1, . . . , n − 1} to send to Bob. She computes
the ciphertext C by solving the congruence C ≡ Me (mod n) for C ∈ {0, 1, . . . , n − 1}
which she sends to Bob. The ciphertext she sends is C = 7. What is the original plaintext
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message she was trying to send?

Solution.

(a) Bob’s public key is the pair (391, 283), because n = pq = 23 × 17 = 391.

(b) Bob needs to solve ed ≡ 1 (mod (p − 1)(q − 1)) for d. That is, he needs to solve

283d ≡ 1 (mod 352),

where (p − 1)(q − 1) = 22 × 16 = 352. We can use the Extended Euclidean
Algorithm to compute gcd(352, 283), which produces the following table:

x y r
R1 1 0 352
R2 0 1 283

R1 − R2 = R3 1 −1 69
R2 − 4R3 = R4 −4 5 7
R3 − 9R4 = R5 37 −46 6
R4 − R5 = R6 −41 51 1

From the table, we see that 352 · (−41) + 283 · (51) = 1. It follows that

283 · 51 ≡ 1 (mod 352)

and thus Bob should choose d = 51. Bob’s private key is therefore (391, 51).

(c) Bob needs to solve R ≡ Cd (mod 391) for R ∈ {0, 1, . . . , 390}, where n = pq and
C = 7. The number R that Bob recovers will be equal to the original message M.
By Splitting the Modulus, the congruence R ≡ 751 (mod 391) is equivalent to{

R ≡ 751 (mod 23)

R ≡ 751 (mod 17).

Note that 23 ∤ 7 and 17 ∤ 7, thus by Fermat’s Little Theorem we have that

722 ≡ 1 (mod 23) and 716 ≡ 1 (mod 17).

Moreover, we have 51 = 2 · 22 + 7 and 51 = 3 · 16 + 3. Thus,

751 ≡ 72·22+7 ≡ (722)2 · 77 ≡ 77 (mod 23).

Now 72 ≡ 49 ≡ 2 · 23 + 3 ≡ 3 (mod 23) and 33 ≡ 27 ≡ 4 (mod 23), so

77 ≡ 76 · 7 ≡ (72)3 ≡ 7 · 33 ≡ 7 · 4 ≡ 28 ≡ 5 (mod 23).

Also, note that 72 ≡ 49 ≡ 51 − 2 ≡ 3 · 17 − 2 ≡ −2 (mod 17), and thus

73 ≡ 72 · 7 ≡ (−2) · 7 ≡ −14 ≡ −17 + 3 ≡ 3 (mod 17).
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Thus, we have found that R must satisfy{
R ≡ 5 (mod 23)
R ≡ 3 (mod 17).

From the first congruence, we see that there must be some integer k ∈ Z such
that R = 5 + 23k. We need to find a value of k such that 5 + 23k ≡ 3 (mod 17),
or equivalently

23k ≡ −2 (mod 17). (∗)

We now compute gcd(23, 17) using the Euclidean Algorithm, which produces
the resulting table:

x y r
R1 1 0 23
R2 0 1 17

R1 − R2 = R3 1 −1 6
R2 − 2R3 = R4 −2 3 5

R3 − R4 = R5 3 −4 1

From the table above, we see that 23 · 3 − 17 · 4 = 1. Multiplying this equation
by −2 yields

23 · (−6) + 17 · 8 = −2,

and so k0 = −6 is one solution to (∗). By the Linear Congruence Theorem, all
other solutions must satisfy k ≡ −6 ≡ 11 (mod 17). That is, k = 11 + 17m for
some integer m. Thus we have found that R is

R = 5+ 23k = 5+ 23(11+ 17m) = 5+ 23 · 11+ 23 · 17m = 5+ 253+ 391m = 258+ 391m,

and thus R ≡ 258 (mod 391). This is the recovered message, which must be
equal to the original plaintext message R ≡ M (mod 391).
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