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Proving equalities

To prove a universally quantified equality (“∀x ∈ S, f (x) = g(x)”):

• Start by letting the variables be arbitrary elements of the domain.

• Show that the LHS (left-hand side) is equal to the RHS (right-hand side) by writing out the
expression of the LHS and manipulating it until you get the RHS.

• Make sure to explain or justify each each step that is not just a straightforward manipulation!

Claim. For every θ ∈ R, it holds that

sin(3θ) = 3 sin θ − 4 sin3 θ.

Proof. First recall the following trigonometric identities. For every choice of real numbers α, β ∈ R,
one has the following angle addition formula:

sin(α + β) = sin α cos β + cos α sin β. (∗)

For every real number α ∈ R, one also has that

sin2 α =
1 − cos(2α)

2
(∗∗)

and that
sin2 α + cos2 α = 1. (∗ ∗ ∗)

Now let θ be an arbitrary real number. One has

sin(3θ) = sin(2θ + θ)

= sin(2θ) cos θ + cos(2θ) sin θ (by the angle addition formula in (∗))

= 2 sin θ cos2 θ + cos(2θ) sin θ (again by (∗))

= 2 sin θ cos2 θ + (1 − 2 sin2 θ) sin θ (by (∗∗))

= 2 sin θ cos2 θ + sin θ − 2 sin3 θ (by rearranging)

= 2 sin θ(1 − sin2 θ) + sin θ − 2 sin3 θ (by (∗ ∗ ∗))

= 3 sin θ − 4 sin3 θ,
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as desired.

Proving inequalities

Proving a universally quantified inequality (“∀x ∈ S, f (x) ≥ g(x)” or “∀x ∈ S, f (x) > g(x)”):

• Same idea as for equalities, but at each step the expression needs to be either equal to or
greater than the next expression.

Claim. For every x ∈ R it holds that

x2 + 5x + 7 > 0.

Proof. Let x be a real number. Now

x2 + 5x + 7 =

(
x2 + 5 +

25
4

)
− 25

4
+ 7

=

(
x +

5
2

)2

+
3
4

≥ 3
4

(because all squares of real numbers are non-negative)

> 0,

which completes the proof.

Proof by cases

You can sometimes prove a statement by:

1. Dividing the situation into cases which exhaust all the possibilities; and

2. Showing that the statement follows in all cases.

Claim. For every choice of real numbers x, y ∈ R, it holds that

max{x, y} =
x + y + |x − y|

2
.

Proof. Let x and y be real numbers. There are two cases to consider: either x ≥ y or x < y.

Case 1: Suppose x ≥ y such that x − y ≥ 0 and thus |x − y| = x − y. One has that

max{x, y} = x =
2x
2

=
x + y + x − y

2
=

x + y + |x − y|
2

,

as desired.
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Case 1: Suppose x < y such that x − y < 0 and thus |x − y| = −x + y. One has that

max{x, y} = y =
2y
2

=
x + y − x + y

2
=

x + y + |x − y|
2

,

as desired.

This proves the claim, as the equality has been shown to hold in every possible case.
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