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Proof by contrapositive

A universally quantified statement of the form

∀x ∈ S , P(x) =⇒ Q(x)

is logically equivalent to its contrapositive:

∀x ∈ S , ¬Q(x) =⇒ ¬P(x).

For some universally quantified statements, it is easier to prove the contrapositive than to prove
the original statement directly.

Claim. ∀x ∈ R, x3 − 5x2 + 3x 6= 15 =⇒ x 6= 5.

Proof. We prove the contraspositive. Let x be a real numbers and suppose that x = 5. Then

x3 − 5x2 + 3x = 53 − 5 · 52 + 3 · 5 = 53 − 53 − 15 = 15,

which completes the proof.

Claim. For all integers k, if k2 + 4k− 2 is odd then k is odd.

Proof. We prove the contrapositive. Let k be an integer and suppose that k is even. There exists an
integer m such that k = 2m. Now,

k2 + 4k− 2 = (2m)2 + 4k− 2 = 2(2m2 + 2k− 1),

which is even as 2m2 + 2k− 1 is an integer.
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Claim. For all real numbers x and y, if xy is irrational then x is irrational or y is irrational.

Symbollically, this claim can be written as:

∀x, y ∈ R, xy /∈ Q =⇒ (x /∈ Q∨ y /∈ Q).

The contrapositive of this statement is

∀x, y ∈ R, (x ∈ Q∧ y ∈ Q =⇒ xy ∈ Q).

Proof. We prove the contrapositive. Let x and y be real numbers ans suppose that both x and y are
rational. There exist integers a, b, m, and n such that b 6= 0 and n 6= 0 and

x =
a
b

and y =
m
n

.

Now
xy =

a
b
· m

n
=

am
bn

,

where am and bn are integers and bn 6= 0 as both b and n are nonzero. We conclude that xy is
rational, which completes the proof.

Proof by Method of Elimination

For sentences A, B, and C, it can be shown that(
A =⇒ (B ∨ C)

)
≡

(
(A ∧ ¬B) =⇒ C

)
.

That is, to prove that either B or C is true, we can suppose B is false, which ‘eliminates’ the possi-
bility of B being true, and then prove in this case that C must be true.

For universally quantified statements, this looks like:(
∀x ∈ S,

(
P(x) =⇒ (Q(x) ∨ R(x))

))
≡

(
∀x ∈ S,

(
(P(x) ∧ ¬Q(x)) =⇒ R(x)

))
.

Claim. For all real numbers x, if |2x− 6| = 4 then x ≥ 3 or x = 1.

Proof. We prove this statement by the Method of Elimination. Let x be a real number and suppose
that |2x− 6| = 4. Suppose further that x < 3. Then 2x ≤ 6 and thus 2x− 6 ≤ 0 which implies that
|2x− 6| = 6− 2x. It follows that from the assumption that |2x− 6| = 4 that

6− 2x = 4

and solving this equation for x yields x = 1, as desired.
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Proving “if and only if” statements

To prove a statement of the form A ⇐⇒ B, one must prove both A =⇒ B and B =⇒ A. For
universally quantified statements, this equivalence is(

∀x ∈ S, P(x) ⇐⇒ Q(x)
)
≡

(
∀x ∈ S, (P(x) =⇒ Q(x)) ∧ (Q(x) =⇒ P(x))

)
.

Claim. Suppose x and y are real numbers such that x ≥ 0 and y ≥ 0. Then x+y
2 =

√
xy if and

only if x = y.

Proof. First suppose that x = y. Then

x + y
2

=
x + x

2
= x =

√
x · x =

√
xy.

Conversely, suppose instead that x+y
2 =

√
xy. Multiplying both sides by 2 yields

x + y = 2
√

xy.

Squaring both sides, we find that
x2 + 2xy + y2 = 4xy,

which is equivalent to
x2 − 2xy + y2 = 0

and thus
(x− y)2 = 0.

We conclude that x− y = 0 and thus x = y. This completes the proof.

Note that B =⇒ A is equivalent to ¬A =⇒ ¬B. Hence sometimes it is easier to prove

A =⇒ B and ¬A =⇒ ¬B,

which also proves equivalence.

Claim. For all integers a, one has that a is even if and only if a2 is even.

Proof. Let a be an integer. First suppose that a is even, such that there is an integer k satisfying
2k = a. Thus

a2 = 4k2 = 2 · (2k2),

which is even as 2k2 is an integer. Conversely, suppose that a is odd such that there is an integer k
satisfying 2k + 1 = a. Thus

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2 · (2k2 + 2k) + 1,

which is odd as 2k2 + 2k is an integer. This completes the proof.
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