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Proof by Contradiction

• Given a statement A, exactly one of A and ¬A is true.

• A contradiction is a statement of the form:

A ∧ ¬A. (∗)

A statement of the form in (∗) must be false!

• If you make an assumption in a proof, and using logical reasoning you are able to use that
assumption to arrive at a contradiction of the form A ∧ ¬A, then your original assumption
must have been wrong!

To prove a statement P by contradiction:

1. Suppose instead that P is false (i.e., that ¬P is true).

2. Use the assumption that ¬P is true to arrive at a contradiction of the form A ∧ ¬A.

3. Conclude that the assumption that P is false must have been wrong.

4. This proves that P is true.

Example

Claim. ∀a, b ∈ Z, a ≥ 2 =⇒ (a ∤ b or a ∤ (b + 1)).

In words, this says that “No integer greater than one can divide two successive integers.”

Proof. Let a and b be integers and assume that a ≥ 2. [We will prove that either a ∤ b or a | (b + 1).]
For the sake of deriving a contradiction, suppose instead that a | b and a ∤ (b + 1). Then there exist
integers m and n such that

b = am and b + 1 = an.
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Then am = b = an − 1 and thus a(n − m) = 1, which implies that a | 1, as n − m is an integer.
Because the only integers that divide 1 are 1 and −1, this implies that either a = 1 or a = −1 and
thus a < 2 in either case. We conclude that both

a ≥ 2 and a < 2,

which is a contradiction. Thus the assumption that a | b and a | (b + 1) is false. Hence it must be
the case that either a ∤ b or a ∤ (b + 1). This completes the proof.

Note that the proof of the above claim is essentially equivalent to proving by contrapositive.
Either method is fine here.

Proof of irrationality of
√

2

Here is an example of a proof by contradiction that cannot be redone as a proof by contrapositive.

Claim.
√

2 is irrational

Proof. Towards a contradiction, suppose instead that
√

2 were rational. Then there exist integers a
and b having no common divisors (other than 1 and −1) such that b ̸= 0 and

√
2 =

a
b

. (1)

As we may suppose that a and b are reduced and have no common factors, we may conclude that
they are not both even. (Otherwise, we would have that 2 | a and 2 | b, which would mean that a
and b share 2 as a common factor.) Squaring both sides of (1) and rearranging, we find that

2b2 = a2

and thus a2 is even, which implies that a is even. Hence there is an integer k such that a = 2k.
Now

2b2 = (2k)2 = 4k2

and thus b2 = 2k2, which implies that b2 is also even and thus b is even. We conclude that both
a and b are even, which contradicts the statement that a and b are chosen such that they have no
common factors. Hence, the assumption that

√
2 is rational is false. It follows that

√
2 must be

irrational.

Another example

Claim. For all real numbers x, if x > 0 then x + 1
x ≥ 2.

Proof. Let x be a real number ans suppose that x > 0. Suppose for the sake of obtaining a contra-
diction that

x +
1
x
< 2.
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Multiplying both sides by x and rearranging yields

x2 − 2x + 1 < 0

or equivalently (x − 1)2 < 0. But the square of every real number is non-negative, so it is also the
case that (x − 1)2 ≥ 0. Hence we conclude that both

(x − 1)2 < 0 and (x − 1)2 ≥ 0

are true, which is a contradiction. Therefore our assumption that x + 1
x < 2 is false, which proves

that x + 1
x ≥ 2, as desired.

Proving uniqueness

To prove a statement of the form:

“There exists a unique x ∈ S such that P(x) is true”

we must prove two things:

(i) Prove there exists at least one x ∈ S such that P(x) is true.

(ii) Prove that, if y ∈ S is another element such that P(y) is true, then it must be that y = x.

Symbolically, these two statements are:

(i) ∃x ∈ S, P(x).

(ii) ∀y ∈ S, P(y) =⇒ (y = x).

Example

Claim. For every odd integer a, there exists a unique integer k such that a = 2k + 1.

Proof. Let a be an odd integer. By definition, there exists an integer k such that a = 2k+ 1. Suppose
now that m is another integer such that a = 2m + 1. Then

2k + 1 = 2m + 1

which implies that k = m. Thus, k is the unique integer satisfying this claim.
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