MATH 135 — Fall 2021 Sample Proofs from Lecture 10

Mark Girard

September 29, 2021

Principle of Mathematical Induction

Let $P(1), P(2), P(3), \cdots$ be a sequence of statements. (I.e., suppose P(n) is an open sentence for numbers $n \in \mathbb{N}$.) If the following are true:

(i) *P*(1)

(ii) $\forall k \in \mathbb{N}, P(k) \implies P(k+1)$

then it is also true that

(iii) $\forall n \in \mathbb{N}, P(n)$.

Example

Claim. $\forall n \in \mathbb{N}, 4 \mid (5^n - 1).$

Proof. We prove by induction. For each $n \in \mathbb{N}$, let P(n) be the statement that $4 \mid (5^n - 1)$.

• <u>Base case:</u> When n = 1, we have

$$5^n - 1 = 5 - 1 = 4,$$

which is divisible by 4, so P(1) is true.

• <u>Induction step</u>: Let k be an arbitrary natural number and suppose that P(k) is true. That is, assume that there exists an integer m such that

$$4m = 5^k - 1. \tag{IH}$$

Now,

$$5^{k+1} - 1 = 5(5^k) - 1$$

= 5(4m + 1) - 1 (by IH)
= 4(5m + 1),

which is divisible by 4 as 5m + 1 is an integer, and thus P(k + 1) is true. By the principle of mathematical induction, it holds that $4 \mid (5^n - 1)$ for every $n \in \mathbb{N}$.

Example

Claim. For every positive integer *n*, it holds that

$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}.$$

Proof. We prove by induction. For each $n \in \mathbb{N}$, let P(n) be the statement that

$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}.$$

• <u>Base case</u>: When n = 1, we have

$$\sum_{i=1}^{n} i(i+1) = 1(1+1) = 2 = \frac{1 \cdot 2 \cdot 3}{3},$$

and thus P(1) is true.

• <u>Induction step</u>: Let k be an arbitrary natural number and suppose that P(k) is true. That is, assume that

$$\sum_{i=1}^{k} i(i+1) = \frac{k(k+1)(k+2)}{3}.$$
 (IH)

Now,

$$\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)(k+2)$$

= $\frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$ (by IH)
= $(k+1)(k+2)\left(\frac{k}{3}+1\right)$
= $\frac{(k+1)(k+2)(k+3)}{3}$

and thus P(k+1) is true.

By the principle of mathematical induction, it holds that $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$ for every $n \in \mathbb{N}$.

Base case does not have to be n = 1

Claim. For all $n \in \mathbb{N}$, if $n \ge 4$ then $n! > 2^n$.

Proof. We prove by induction. For each $n \in \mathbb{N}$, let P(n) be the statement that $n! > 2^n$.

• <u>Base case:</u> When n = 4, we have

$$4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24 > 16 = 2^4,$$

and thus P(4) is true.

• <u>Induction step</u>: Let *k* be an arbitrary natural number such that $k \ge 4$. Suppose that P(k) is true. That is, assume that

$$k! > 2^k. \tag{IH}$$

Now,

$$(k+1)! = k!(k+1)$$

$$> 2^{k}(k+1) \qquad (by IH)$$

$$\ge 2^{k} \cdot 5 \qquad (because k \ge 4)$$

$$> 2^{k} \cdot 2 \qquad (because 5 > 2)$$

$$= 2^{k+1}$$

and thus $(k + 1)! > 2^{k+1}$, so P(k + 1) is true.

By the principle of mathematical induction, it holds that $n! > 2^n$ for every $n \ge 4$.