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Principle of Strong Induction

When assuming only the one previous step is not enough to prove the next step, Strong Induction
is needed! The principle of strong induction can be stated more generally as follows.

Principle of Strong Induction. Let b ∈ N and suppose P(b), P(b + 1), P(b + 2), . . . is a
sequence of statements. Let c ∈ N. If the following are true:

(i) P(b), P(b + 1), . . . , P(b + c − 1), and

(ii) For all k ≥ b + c − 1, if P(b) ∧ P(b + 1) ∧ · · · ∧ P(k) then P(k + 1)

then it is also true that

(iii) For all n ≥ b, P(n).

Note that the base cases are P(b), P(b + 1), . . . , P(b + c − 1), where

• b is the first base case (there must always be at least one base case), and

• c is the total number of base cases.

Example: Recursively defined sequences

(Note: The example I did in class is on the homework, so I’ve typed up a different example here.)

Consider a sequence x1, x2, x3, . . . defined as follows. Define x1 = 2 and x2 = 34, and for
every integer n ≥ 2 define

xn+1 = 2xn + 15xn−1.

It holds that
xn = (−3)n + 5n (∗)

for every n ∈ N.

Proof. We prove by induction. For each n ∈ N, let P(n) be the statement that xn = (−3)n + 5n.

1



• Base cases: When n = 1, we have

x1 = 2 = −3 + 5 = (−3)1 + 51,

so P(1) is true. When n = 2, we have

x2 = 34 = 9 + 25 = (−3)2 + 52,

so P(2) is true.

• Induction step: Let k ∈ N and suppose k ≥ 2. Assume for every m ∈ {1, 2, . . . , k} that P(m)
is true. That is, we assume that for every m ∈ {1, 2, . . . , k} it holds that

xm = (−3)m + 5m. (IH)

Now, because k ≥ 2 we may use (∗) to write

xk+1 = 2xk + 15xk−1 by (∗)

= 2
(
(−3)k + 5k

)
+ 15

(
(−3)k−1 + 5k−1

)
by IH

= 2 · (−3)k + 2 · 5k − 5 · (−3)k + 3 · 5k

= (−3) · (−3)k + 5 · 5k

= (−3)k+1 + 5k+1,

and thus P(k + 1) is true.

By the principle of strong induction, it follows that xn = (−3)n + 5n for every n ∈ N.

Example: Breaking up a chocolate bar

Note that using strong induction does not necessarily mean that we need multiple base cases.
Here is an example of a proof that requires strong induction but has only one base case.

Claim. For every n ∈ N, breaking a rectangular chocolate bar consisting of n identical squares
requires n − 1 breaks to completely break into individual pieces.

Proof. We prove by induction. For each n ∈ N, let P(n) be the statement:

“Every rectangular chocolate bar consisting of n identical squares requires n− 1 breaks
to completely break into individual pieces.”

• Base case: When n = 1, every rectangular chocolate bar of 1 square is already completely
broken apart and requires zero breaks, so P(1) is true.

• Induction step: Let k be an arbitrary natural number and suppose that P(1), P(2), . . . and
P(k) are all true. Now, suppose you are given a rectangular chocolate bar consisting of k + 1
identical squares. As k ≥ 1, the chocolate bar requires at least one break to break apart.
Suppose we break the bar into two smaller rectangles such that the two smaller rectangles
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consist of a and b squares respectively, where a, b ∈ {1, 2, . . . , k}. By the induction hypoth-
esis, breaking each of these two smaller rectangles requires a total of a − 1 and b − 1 breaks
respectively. Thus, the total number of breaks to break the original chocolate bar of size k + 1
squares into individual pieces is

1︸︷︷︸
for the first break

+ (a − 1)︸ ︷︷ ︸
to break the bar of size a

+ (b − 1)︸ ︷︷ ︸
to break the bar of size b

= a + b︸ ︷︷ ︸
=k+1

−1

= (k + 1)− 1,

and thus P(k + 1) is true.

By the principle of mathematical induction, it holds that P(n) is true for every n ∈ N. This
completes the proof.

3


