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1. Prove using only the definition of the limit that lim
x→4

(x2 − 3x+ 2) = 6.

Solution. We will show that, for every ε > 0, there is a δ > 0 such that for all x ∈ R,
|x− 4| < δ =⇒ |(x2 − 3x+ 2)− 6| < ε.

Proof. Let ε > 0 be given and choose δ = min{1, ε6}. Let x ∈ R be given and suppose
that |x−4| < δ. Then |x−4| < 1 which implies that 3 < x < 5 and thus 4 < x+1 < 6.
Hence |x+ 1| ≤ 6. Now

|(x2 − 3x+ 2)− 6| = |x+ 1||x− 4|
≤ 6|x− 4| since |x+ 1| ≤ 6

< ε since |x− 4| < ε

6

as desired.

Here is an alternate proof that chooses δ in a different way.

Alternate proof. Let ε > 0 be given and choose δ = min{
√

ε
2 ,

ε
10}. Let x ∈ R be given

and suppose that |x− 4| < δ. Then |x− 4| <
√

ε
2 and |x− 4| < ε

10 . Now

|(x2 − 3x+ 2)− 6| = |x− 4||x+ 1|
= |x− 4||x− 4 + 5|
≤ |x− 4|(|x− 4|+ 5) (by the Triangle inequality)

= |x− 4|2 + 5|x− 4|

<
(√ ε

2

)2
+ 5

( ε
10

)
(since |x− 4| <

√
ε

2
and |x− 4| < ε

10
)

=
ε

2
+
ε

2
= ε

as desired.

2. Suppose a1, a2, a3 . . . is a sequence that converges to 2, and suppose further that an 6= 5 for

all n ∈ N. Show (using only the definition of the limit) that lim
n→∞

3

5− an
= 1.

1



Solution. We will show that, for every ε > 0, there is an N ∈ N such that
∣∣∣ 3
5−an − 1

∣∣∣ < ε

for every n ≥ N .

Proof. Let ε > 0 be given. Define ε1 = min{1, 2ε} and note that ε1 > 0. Because it is
assumed that lim

n→∞
an = 2, there is a number N ∈ N such that |an − 2| < ε1 for every

n ≥ N . Let n ≥ N be given. Then |an − 2| < ε1 and thus |an − 2| < 1. It follows that
1 < an < 3 which implies that −4 < an − 5 < −2 and thus |an − 5| ≥ 2. Now∣∣∣∣ 3

5− an
− 1

∣∣∣∣ =

∣∣∣∣an − 2

an − 5

∣∣∣∣
≤ |an − 2|

2
(since |an − 5| ≥ 2 and thus

1

|an − 5|
≤ 1

2
)

< ε (since |an − 2| < 2ε)

as desired.

3. Let L ∈ R and let f be a function such that lim
x→∞

f(x) = L. For each of the following

statements, either prove it is true (using only the definition of the limit) or show it is false
by providing a counterexample.

(a) lim
x→0+

f

(
1

x

)
= L.

Solution. This statement is true. We will show that, for every ε > 0, there is a
δ > 0 such that |f( 1x)− L| < ε for every x ∈ (0, δ).

Proof. Let ε > 0 be given. Because it is assumed that lim
x→∞

f(x) = L, there is a

number N > 0 such that |f(x)−L| < ε for every x > N . Define δ = 1
N such that

δ > 0. Let x ∈ R be given and suppose that x ∈ (0, δ). Then 0 < x < δ and thus
0 < 1

δ <
1
x . This implies that 1

x > N and thus∣∣∣∣f (1

x

)
− L

∣∣∣∣ < ε,

as desired.

(b) lim
x→0

f

(
1

x

)
= L.

Solution. This statement is FALSE. The idea is that 1
x → 0+ as x → ∞ and

thus lim
x→0+

f
(
1
x

)
= L. However, this does not tell us anything about the left-

sided limit lim
x→0−

f
(
1
x

)
. So we should be able to find a counterexample where

lim
x→0−

f
(
1
x

)
6= lim

x→0+
f
(
1
x

)
.
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Proof (that this is false). Define a function f as

f(x) =

{
+1 x ≥ 0

−1 x < 0

such that lim
x→∞

f(x) = 1. From part (a), we also have that the right-sided limit

is lim
x→0+

f( 1x) = 1. However, note that 1
x < 0 and thus f( 1x) = −1 for all x < 0.

Hence we can conclude that the left-sided limit is equal to lim
x→0−

f( 1x) = −1. Since

the two one-sided limits at x = 0 do not agree, it follows that lim
x→0

f

(
1

x

)
does

not exist (and thus not equal to L).

4. Let f be a function such that |f(x)| ≤ x2 for all x ∈ R. Prove that f is differentiable at x = 0
and that f ′(0) = 0.

Solution. The idea here is to use the Squeeze Theorem and the definition of the deriva-

tive to show that lim
h→0

f(h)− f(0)

h
= 0.

Proof. First note that |f(0)| ≤ 0 by assumption and thus f(0) = 0. Moreover, for
every h ∈ R it holds that −h2 ≤ f(h) ≤ h2, or equivalently

−|h|2 ≤ f(h) ≤ |h|2.

Since |h| > 0 whenever h 6= 0, we may divide the above inequality by |h| to find that

−|h| ≤ f(h)

|h|
≤ |h|

and thus

−|h| ≤ f(h)− f(0)

h
≤ |h|

for every h 6= 0 (where we use the fact that f(0) = 0). From the Squeeze Theorem, it
follows that

lim
h→0
−|h| ≤ lim

h→0

f(h)− f(0)

h
≤ lim

h→0
|h|.

Finally, since lim
h→0
−|h| = 0 = lim

h→0
|h| and f ′(0) = lim

h→0

f(h)− f(0)

h
, we conclude that

f ′(0) = 0.

5. For each of the following functions, find all of the following: (i) the domain, (ii) the range,
(iii) critical points, (iv) intervals where the function is increasing/decreasing, (v) intervals
where the function is concave up/down, (vi) inflection points, (vii) local minima/maxima,
(viii) global minimum/maximum (if they exist).
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(a) f(x) = x− 3x1/3

Solution. Let’s first plot the graph of this function:

−8 −6 −4 −2 2 4 6 8

−3

−2

−1

1

2

3

i. This function is defined for all x. Therefore dom(f) = R.

ii. This function is continuous on all of R. Moreover, we have the limits
lim

x→−∞
f(x) = −∞ and lim

x→+∞
f(x) = +∞. Thus the range of f is all of

R.

iii. The derivative is f ′(x) = 1− x−2/3 = 1
x2/3

(x2/3 − 1), which is equal to zero
when x = ±1. The critical points are therefore at x = ±1 and x = 0 (where
the derivative doesn’t exist).

iv. Note that we may write x2/3 as (x1/3)2, so we may express the derivative as

f ′(x) =
1

x2/3
(x1/3 − 1)(x1/3 + 1).

To see the behaviour of the function, we can construct the following table

(−∞,−1) (−1, 0) (0, 1) (1,∞)

x2/3 + + + +

(x1/3 − 1) − − − +

(x1/3 + 1) − + + +

f ′(x) + − − +

f(x) ↗ ↘ ↘ ↗

Thus f is increasing on the intervals (−∞,−1] and [1,∞), while it is de-
creasing on [−1, 1].
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v. The second derivative is f ′′(x) = 2
3x
−5/3, which is never equal to zero but

does not exist at x = 0. Note that x−5/3 is negative when x is negative, and
is positive when x is positive. This gives us the table

(−∞, 0) (0,∞)

f ′′(x) − +

f(x) _ ^

Thus f is concave down on (−∞, 0] and concave up on [0,∞).

vi. The second derivative is never equal to zero. Thus the graph of f has no
inflection points.

vii. There is a local maximum at −1 and a local minimum at 1.

viii. Note that lim
x→±∞

= ±∞ and thus f has neither a global min nor max.

(b) f(x) = 3
2−ex

Solution. Let’s first plot the graph of this function:

−8 −6 −4 −2 2 4 6 8

−3

−2

−1

1

2

3

i. This function is defined for all x except when 2−ex = 0, which occurs when
x = ln 2. Therefore dom(f) = {x ∈ R : x 6= ln 2} = R \ {ln 2}.

ii. Here we must find all values y ∈ R for which y = f(x) has a solution. First
note that f(x) = 0 has no solutions and thus 0 is not in the range of f . So
suppose that y 6= 0 and suppose that y = 3

2−ex has a solution. Then

ex = 2− 3

y
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which has a solution if and only if 2 − 3
y > 0 (since ex is always positive),

or equivalently 2
3 >

1
y . There are two cases:

• Suppose y > 0. Then y is in the range if and only if y > 3
2 .

• Suppose y < 0. Then y is in the range if and only if y < 3
2 . Hence

every y < 0 is in the range of f .

Hence range(f) = {y ∈ R : y < 0 or y > 3
2} = (−∞, 0) ∪ (32 ,∞).

iii. The derivative is given by f ′(x) = 3ex

(2−ex)2 which is never equal to zero and

does not exist when x = ln 2. But f is not defined at ln 2, so it does not
have a critical point there. Thus f has no critical points.

iv. Note that ex > 0 for all x and that (2 − ex)2 > 0 for all x 6= ln 2. Hence
f ′(x) > 0 everywhere on its domain and thus f is increasing on its entire
domain.

v. The second derivative is given by f ′′(x) = 3ex(2+ex)
(2−ex)3 . Note that f ′′(x) < 0

when 2 − ex < 0 (or equivalently when x > ln 2) and that f ′′(x) > 0 when
2 − ex > 0 (or equivalently when x < ln 2). Thus f is concave up on
(−∞, ln 2) and concave down on (ln 2,∞).

vi. The second derivative is never equal to zero. Thus the graph of f has no
inflection points.

vii. There are no local extrema as f has no critical points.

viii. Note that lim
x→ln 2±

f(x) = ∓∞ and thus f has neither a global min nor max.

6. Consider the limit lim
x→∞

x+ sinx

x+ 1
.

(a) Explain which conditions are satisfied for applying L’hopital’s rule for this limit. What
happens when you apply L’hopital’s rule?

Solution. First let’s show that lim
x→∞

(x+ sinx) =∞.

Proof. Let M > 0 be given. Pick N = M + 1 and let x be a real number such
that x ≥ N . (We will show that x+ sinx > M .) Now sinx ≥ −1 and thus

x+ sinx ≥ x− 1 > N − 1 = M

as desired.

It is clear that lim
x→∞

(x+1) =∞ and thus both the numerator and the denominator

of the limit lim
x→∞

x+ sinx+

x
diverge to infinity. If we apply L’hopital’s rule, we
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find

lim
x→∞

x+ sinx

x+ 1
= lim

x→∞

1 + cosx

1
= lim

x→∞
(1 + cosx).

However, this limit doesn’t exist! Indeed, consider the sequences a1, a2, a3, . . .
and b1, b2, b3, . . . defined as

an = 2nπ and bn = (2n+ 1)π

for all n ∈ N. Then lim
n→∞

an = ∞ and lim
n→∞

bn = ∞, but (1 + cos an) = 2 and

(1 + cos bn) = 0 for all n ∈ N. So the limit limx→∞(1 + cosx) doesn’t exist.

(b) Use another method to compute this limit.

Solution. We may compute the limit using other methods. Note that

−1

x
≤ sinx

x
≤ 1

x

for all x > 0 and thus lim
x→∞

sinx

x
= 0. Now

lim
x→∞

x+ sinx

x+ 1
= lim

x→∞

1 + sinx
x

1 + 1
x

=
1 + lim

x→∞

sinx

x

1 + lim
x→∞

1

x

=
1 + 0

1 + 0
= 1.

(c) What conditions for applying L’hopital’s rule are NOT met for this limit? Use this to
explain why the answers from (a) and (b) are different.

Solution. Recall what the Theorem regarding L’hopital’s rule says:

Theorem. Suppose that a ∈ R or a =∞ or a = −∞ and suppose that at least one
of the following are true:

• limx→a f(x) = 0 and limx→a g(x) = 0.

• limx→a f(x) = ±∞ and limx→a g(x) = ±∞.

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if this limit exists.

The important part is that the limit lim
x→a

f ′(x)

g′(x)
must exist for us to be able to

apply L’hopital’s rule!
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