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Question 1. For some perfect squares, when you remove the last digit, you get another perfect square. For
example, when you remove the last digit from 256 (162), you get 25 (52).

The first few squares for which this happens are 16, 49, 169, 256 and 361. What are the next three
squares for which you can remove the last digit and get a different perfect square? How many more can you
find? (Bonus points for not looking this up online or writing code to solve it for you! There are interesting
ways to do this by hand, I swear.)

Extra credit: Did you look up the sequence and spoil the puzzle for yourself? Good news, there’s more!
In the list above, 169 (132) is a little different from the other numbers. Not only when you remove the last
digit do you get a perfect square, 16 (42), but when you remove the last two digits, you again get a perfect
square: 1 (12). Can you find another square with both of these properties?

The goal is to find integers x, y ∈N such that x2 = 10y2 + r for some r ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
We must have that x2 ≡ r mod 10, but the only possible quadratic residues modulo 10 are
r ∈ {0, 1, 4, 5, 6, 9}. Note that r 6= 0 unless x = y = 0, as 10 is not square (as we cannot other-
wise have x2 = 10y2). It is also not possible to have r = 5 (as this would require 5|x and 2 6 |x such
that x2 ≡ 25 mod 100, but this would imply y2 ≡ 2 mod 10, which is impossible). Therefore, we
are looking for solutions to

x2 − 10y2 = r where r ∈ {1, 4, 6, 9}.

From here, things get a bit more difficult. We can make use of some well known analysis of
solutions to the generalized Pell equation. It turns out, however, that answering the extra credit
problem is much easier!

Extra credit solution

For the extra credit problem, we are looking for triples of integers x, y, z ∈N that satisfy

x2 = 10y2 + r and y2 = 10z2 + s

for some residues r, s ∈ {1, 4, 6, 9}. A solution here must therefore satisfy

x2 = (10z)2 + 10r + s

for some r, s ∈ {1, 4, 6, 9}. Let x and y comprise such a solution and let k = x− 10z so that k ≥ 1.
It follows that 20kz + k2 = 10r + s and thus 20z < 99 (since we must have 10r + s ≤ 99), which
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implies z < 5. To find all solutions, it therefore suffices to check the values z ∈ {1, 2, 3, 4} and
r, s ∈ {1, 4, 6, 9} for which the numbers 100z2 + 10r + s and 10z2 + r are perfect squares. Here is
some python code that implements this search.

import math

def is_square(n):

return math.isqrt(n)**2 == n

for z in [1,2,3,4]:

for r in [1,4,6,9]:

for s in [1,4,6,9]:

if is_square(100*z**2 + 10*r + s) and is_square(10*z**2 + r ):

print(100*z**2 + 10*r + s)

We see that the only solution is 169.

Pell’s equation and Z[
√

10]

We want to look for solutions to the following equations:

x2 − 10y2 = 1

x2 − 10y2 = 4

x2 − 10y2 = 6

x2 − 10y2 = 9

These are examples of a generalized Pell equation, which have been extensively studied. Solutions
can be found by studying the ring Z[

√
10] = {x + y

√
10 : x, y ∈ Z}. This ring is a Euclidean

domain with Euclidean norm function N : Z[
√

10]→ Z defined by

N(x + y
√

10) = (x + y
√

10)(x− y
√

10) = x2 − 10y2

for all x, y ∈ Z which satisfies the following conditions:

• N(u) = 0 if and only if u = 0

• N(uv) = N(u)N(v) for all u, v ∈ Z[
√

10]

An element u ∈ Z[
√

10] is a unit if N(u) = 1. There exists a fundamental unit u ∈ Z[
√

10] such that
every other unit v ∈ Z[

√
10] is of the form v = uk for some k ∈ N. It can be worked out that this

unit is: u = 19 + 6
√

10.
Similarly, for n ∈N with n > 1, all solutions to

x2 − 10y2 = n

are of the form vuk for some k ∈ N, where v is one of finitely many fundamental solutions to this
equation.
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Solutions to x2 − 10y2 = 1

The fundamental unit is u = 19 + 6
√

10 and all solutions are of the form x2 − 10y2 = uk for some
k ∈N. The first few solutions are:

k (19 + 6
√

10)k = x + y
√

10 x2

1 19 + 6
√

10 361
2 721 + 228

√
10 519841

3 27379 + 8658
√

10 749609641
4 1039681 + 328776

√
10 1080936581761

Solutions to x2 − 10y2 = 4

There is only one fundamental solution: 2. All other solutions are of the form 2(19 + 6
√

10)k for
some k ∈N. The first few solutions are:

k 2(19 + 6
√

10)k = x + y
√

10 x2

1 38 + 12
√

10 1444
2 1442 + 456

√
10 2079364

3 54758 + 17316
√

10 2998438564
4 2079362 + 657552

√
10 4323746327044

Solutions to x2 − 10y2 = 6

There are two fundamental solutions: 4±
√

10. Note that 4−
√

10 is not a true solution, since we
require x, y ≥ 0. But multiplying this by the fundamental unit yields the solution

(4−
√

10)(19 + 6
√

10) = 16 + 5
√

10.

All other solutions are of the form

(4 +
√

10)(19 + 6
√

10)k or (16 + 5
√

10)(19 + 6
√

10)k

for some k ∈N. The first few solutions are:
k (4 +

√
10(19 + 6

√
10)k = x + y

√
10 x2

0 4 +
√

10 16
1 136 + 43

√
10 18496

2 5164 + 1633
√

10 26666896
3 196096 + 62011

√
10 38453641216

k (4−
√

10(19 + 6
√

10)k = x + y
√

10 x2

1 16 + 5
√

10 256
2 604 + 191

√
10 364816

3 22936 + 7253
√

10 526060096
4 870964 + 275423

√
10 758578289296
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Solutions to x2 − 10y2 = 9

There are three fundamental solutions: 3 and 7± 2
√

10. As before 7− 2
√

10 is not a true solution,
but multiplying this by the fundamental unit yields the solution

(7− 2
√

10)(19 + 6
√

10) = 13 + 4
√

10.

All other solutions are of the form

3(19 + 6
√

10)k, (7 + 2
√

10)(19 + 6
√

10)k or (13 + 4
√

10)(19 + 6
√

10)k

for some k ∈N. The first few solutions are:
k 3(19 + 6

√
10)k = x + y

√
10 x2

1 57 + 18
√

10 3249
2 2163 + 684

√
10 4678569

3 82137 + 25974
√

10 6746486769
4 3119043 + 62011

√
10 9728429235849

k (7 + 2
√

10(19 + 6
√

10)k = x + y
√

10 x2

0 7 + 2
√

10 49
1 253 + 80

√
10 64009

2 9607 + 3038
√

10 92294449
3 364813 + 115364

√
10 133088524969

k (13 + 4
√

10(19 + 6
√

10)k = x + y
√

10 x2

0 13 + 4
√

10 169
1 487 + 154

√
10 237169

2 18493 + 5848
√

10 341991049
3 702247 + 222070

√
10 493150849009
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