
Riddler April 9, 2021:
One-way streets

Mark Girard

April 11,2021

Question 1. In Riddler City, all the streets are currently two-way streets. But in an effort to make the
metropolis friendlier for pedestrians and cyclists, the mayor has decreed that all streets should be one-way.
Meanwhile, the civil engineer overseeing this transition is not particularly invested in the project and will
be randomly assigning every block of each street a random direction.

For your daily commute to work, you drive a car two blocks east and two blocks south, as shown in
the diagram below. What is the probability that, after each block is randomly assigned a one-way direction,
there will still be a way for you to commute to work while staying within this two-by-two block region (i.e.,
sticking to the 12 streets you see in the diagram)? Here is one such arrangement of one-way streets that lets
you commute to work:

I was not able to think of a solution that did not involve brute force to generate all possible
traffic patterns of the 2 × 2 traffic grid. As there are a total of twelve segments of road and each
road can have one of two directionalities, there are a total of 212 (4096) possibilities.

My method was to generate each possibility as a directed graph then for each of the 4096
directed graphs determine if there is a path on the graph from the upper-left corner to the lower-
right corner. Once a directed graph has been constructed, I used a breadth-first algorithm to find
all nodes that can be visited from the initial node. The graph in question has 9 nodes (it is a 3 × 3
grid of intersections), but the following code works for any m× n rectangular grid of intersections.

The code below defines the following functions:

• makeEdges(m,n) — Makes a list having length 2mn − m − n of all one-way edges in the
grid. Each edge either has the form [(i, j), (i + 1, j)] or [(i, j), (i, j + 1)], where [(a, b), (c, d)]
indicates an edge connecting vertices at (a, b) and (c, d).

1

• makeNeighbours(edges, directions) — Given a list of edges from makeEdges and a string
of zeros and ones having the same length, this function loops through all edgess and flips
edge k if direction[k] is equal to 1.

• existsPath(start,end,neighbours) — Determines if there is a path from vertex start to
vertex end in the directed graph whose directed edges are listed in neighbours.

• solution(m,n) — Computes the number of total possibilites for the graph and the number
of possibilities having a route from the upper-left corner to the lower-right corner.

The output if solution(3,3) is 1135, 4096. Thus, given a random choice of directions for
each of the one-way streets, there is a 1135/4096 (i.e., 0.277099609375) chance of their existing a
route from home to work.

from collections import defaultdict

def makeEdges(m,n):

edges = []

for i, j in prodict(range(m),range(n)):

if i < m - 1 :

edges.append([(i,j),(i+1,j)])

if j < n - 1 :

edges.append([(i,j),(i,j+1)])

return edges

def makeNeighbours(edges, directions):

neighbours = defaultdict(set)

for k, [a, b] in enumerate(edges):

if int(directions[k]):

a, b = b, a

neighbours[a].add(b)

return neighbours

def existsPath(start,end,neighbours):

visited = set([start])

nodes = [start]

while nodes:

new_nodes = []

for node in nodes:

for neighbour in neighbours[node]:

if neighbour == end:

return True

if (neighbour not in visited):

visited.add(neighbour)

new_nodes.append(neighbour)

nodes = new_nodes

return False

2

def solution(m,n):

edges = makeEdges(m,n)

feasible = []

num_edges = len(edges)

count = 0

for i in range(2**num_edges):

neighbours = makeNeighbours(edges,format(i, ’0’+str(num_edges)+’b’))

if existsPath((0,0),(m-1,n-1),neighbours):

count += 1

feasible.append(i)

return count, 2**num_edges

a,b = solution(3,3)

print(a,b,a/b)

3

