
Riddler May 13, 2022:
Nonconformist dice game

Mark Girard

May 19, 2022

From Ross O’Brien comes a game of nonconformist dice:

Question 1. You begin by rolling four fair tetrahedral dice whose four sides are numbered
1 through 4 and examining the result.

• Divide the resulting dice into two groups: those whose values are unique, and those
which are duplicates.

• If all four dice are in the ‘unique’ group, you win.

• If all four are in the ‘duplicate’ group, you lose.

• Otherwise, take all dice in the duplicate group and re-roll them.

Repeat this process until lyou either win or lose.
For example, if you roll a 1, 2, 2 and 4, then the 1 and 4 will go into the ‘unique’ group,

while the 2s will go into the ‘duplicate’ group. You reroll the 2s and the result happens to
be 1 and 3. The ‘unique’ group now consists of 3 and 4, while the ‘duplicate’ group will
have two 1s. You re-roll the two 1’s and obtain a 1 and a 2. Now all dice are showing a
different number, so you win!

What is your probability of winning the game?

Generalized game with n dice each having k-sides

We can generalize the game in the following manner. Let us supppose that we have n dif-
ferent k-sided dice. Then we can play the same game described in the problem statement.
We can assume that n ≤ k, because otherwise if k < n there are more dice than distinct
sides and we can never win.

Begin by rolling all n dice. Let d be the number of dice showing a distinct number.1

Note that it is impossible to have exactly d = n − 1, because otherwise the nth remaining

1For example, if five 6-sided dice are rolled yielding the outcome (, , , ,), then d = 3 as the sides
, and are each displayed exactly once and there are two dice showing .

1

die must also be a distict number. There are a few different possible outcomes after rolling
the dice:

• If d = 0, then you lose.

• If d = n, then you win!

• Otherwise, if d ∈ {1, 2, . . . , n − 2}, we pick up the n − d dice that are not showing a
distinct side and re-roll only those dice.

As others have pointed out, the distinct ‘states’ of this game can be completely de-
scribed by the number d at the end of a roll.2 Moreover, the ‘starting’ position of the game
is equivalent to being in the state where d = 1. Indeed, when rolling all of the dice you
must first roll one die, after which you are in exactly the same position as if you had rolled
all the dice then picked up all but one.

The game can therefore be described by an absorbing Markov chain having the n − 1
nodes 0, 1, 2, . . . , n − 2, and n. The absorbing nodes are 0 (the losing node) and n (the
winning node), where the initial node is node 1. It remains to determine the transition
probabilites between these nodes.

Original game with n = k = 4

In the case when n = k = 4 (as in the originally proposed game), straightforward count-
ing yields the following matrix of transition probabilities:

P =

1 2 0 4

1 3
16

9
16

5
32

3
32

2 1
8

5
8

1
8

1
8

0 0 0 1 0
4 0 0 0 1

 (1)

where the (i, j)-entry of the matrix is the probability that you move to state j conditioned
on being in state i. This matrix has the form:

P =

(
Q R
0 I

)
and the absorbing probabilities (i.e., the probability of ending in state j conditioned on
being in the state i) are given by

(I − Q)−1R =

(0 4

1 11
20

9
20

2 31
60

29
60

)
. (2)

2For example, by simply relabeling everything, the state (, , , ,) (where one subsequently picks
up and re-rolls the two s) is equivalent to the state (, , , ,) (where one picks up and re-rolls the
two s). In both cases d = 3.

2

Namely, the probability of winning the game (getting to the state where all 4 are distinct
while starting from the position that 1 is distinct) with four 4-sided dice is 9/20 or 45%.

Five 5-sided dice

We can perform the same analysis as above but with five fair 5-sided dice (assuming such
objects exist). The calculations for computing the number of ways to reach each state were
tedious, but the resulting matrix of transition probabilities for this game is:

P =

1 2 3 0 5

1 8
25

24
125

48
125

41
625

24
625

2 38
125

21
125

54
125

6
125

6
125

3 6
25

3
25

14
25 0 2

25
0 0 0 0 1 0
5 0 0 0 0 1

and computing the absorbing probabilities we find

(I − Q)−1R =

0 5

1 26251
75595

49344
75595

2 24916
75595

50679
75595

3 21114
75595

54481
75595

.

The probability of winning the game at the start is equal to 49344/75595 ≈ 0.6527, or
about 65.27%. Your odds of winning go up with more dice!

Winning the generalized game ()

In the end, I wasn’t able to find a good way of doing this other than to simply enumerate
all possible outcomes and count the number of dice showing a distinct side. Fortunately
I was able to write some code to do this for me. The code can be found at the end of this
document.

The complexity of the computation grows as O(kn). After games of about 9 dice it gets
too big for me to do on my computer. Here is a table showing the exact odds of winning
a game with n dices having k sides.

(Notes: If there is only one die then you trivially win on the first throw. If there are 2
dice, the odds that the second die is the same as the first is 1/k, so the odds of winning
are 1 − 1/k. If n > k then you can never win.)

3

1 0 0 0 0 0 0
1 1

2 0 0 0 0 0
1 2

3
2
3 0 0 0 0

1 3
4

6
7

9
20 0 0 0

1 4
5

12
13

336
473

49344
75595 0 0

1 5
6

20
21

150
181

2120
2391

109150
208811 0

1 6
7

30
31

135
152

162735
171506

125767120
150660819

12734579130720
22172908070131

Some code

from itertools import product

from collections import Counter

from sympy.matrices import Matrix, eye

from sympy import Rational, print_latex

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

def make_transition_probs(n, k):

states = list(range(n-1)) + [n]

P = {i:{j:0 for j in states} for i in states}

Loop through all possible outcomes when rolling (n-1) k-sided dice

for roll in product(range(k), repeat=(n-1)):

Loop through the previous states 1, 2, ..., n-2

for i in range(1, (n-1)):

Assume wlog that the i unique dice are labeled 1, 2, ..., i

prev_tally = Counter(range(i))

Ignore the first i dice from the roll, and add the rest to the tallys

4

curr_tally = Counter(roll[i-1:]) + prev_tally

Count up the number of distinct dice in the new tally

j = sum(x == 1 for x in (curr_tally).values())

Add this to the number of counts

P[i][j] += 1

Divide each count by the total number of possible outcomes (k**(n-1))

for i, j in product(states, repeat=2):

P[i][j] /= Rational((k**(n-1)))

Insert absorbing probabilities

P[0][0] = 1

P[n][n] = 1

return P

def make_matrices(n,k):

P = make_transition_probs(n, k)

Q = np.array([[P[i][j] for j in range(1, n-1)] for i in range(1, n-1)])

R = np.array([[P[i][j] for j in (0,n)] for i in range(1, n-1)])

P = np.block([[Q,R],[np.zeros((2,n-2),dtype=int),eye(2)]])

return P, Q, R

def get_win_prob(n,k):

if n > k:

return 0

if n == 1:

return 1

if n == 2:

return Rational((k-1),k)

_, Q, R = make_matrices(n,k)

N = Matrix(eye(n-2) - Q)

T = N.inv()*R

return T[0,-1]

def main():

nmax = 6

kmax = 6

y = np.array([[get_win_prob(n,k) for n in range(1,nmax)] for k in range(1,kmax)])

5

print("LaTeX code for matrix")

print_latex(Matrix(y))

df = pd.DataFrame(y.astype(float))

df.columns = df.index = range(1,len(df)+1)

green = plt.get_cmap("Greens")

df = pd.concat([df], keys=[’Number of sides (k)’])

iterables = [["Number of dice (n)"], range(1,nmax)]

df.columns = pd.MultiIndex.from_product(iterables)

s = df.style.background_gradient(vmin=0, vmax=1, cmap=green)

print("HTML code for table")

print(s._repr_html_())

if __name__ == "__main__":

main()

6

