
Riddler June 24, 2022:
Goat parking functions

Mark Girard

June 27, 2022

Riddler classic

From Quoc Tran comes a caprine conundrum:

Question 1. A goat tower has 10 floors, each of which can accommodate a single goat. Ten goats approach
the tower, and each goat has its own (random) preference of floor. Multiple goats can prefer the same floor.

One by one, each goat walks up the tower to its preferred room. If the floor is empty, the goat will make
itself at home. But if the floor is already occupied by another goat, then it will keep going up until it finds
the next empty floor, which it will occupy. But if it does not find any empty floors, the goat will be stuck on
the roof of the tower.

What is the probability that all 10 goats will have their own floor, meaning no goat is left stranded on
the roof of the tower?

Solution

This Riddler is a take on the classic parking function problem—a well studied combinitorial prob-
lem for which there seems to be much literature. The problem seems to have first been studied by
Konheim and Weiss [1]. It’s worth taking a look at the original discussion of the problem (despite
the outdated heteronormative overtones) to see why this is called the “parking function” problem.
A snippet of the original paper is included here in Figure 1.

Figure 1: A snip of the original paper by Konheim and Weiss [1]

1



Counting parking functions

We can more rigorously define the problem as follows. Essentially, we are tasked here with com-
puting the number of parking functions, which we can define below.

Definition 2. A parking function on n elements is a function f : {1, 2, . . . , n} → {1, 2, . . . , n} such
that the values f (1), f (2), . . . , f (n) when sorted in non-decreasing order

f (k1) ≤ f (k2) ≤ · · · ≤ f (kn)

satisfy f (k j) ≤ j for each j ∈ {1, 2, . . . , n}.

To see why the concept of a parking function captures the essence of the problem, consider
an arbitrary function f : {1, 2, . . . , n} → {1, 2, . . . , n} such that the value of f (k) indicates the
preferred floor of the kth goat. Such a function is a valid preference function (yielding a parking
arrangement of goats where no goat is stuck on the roof) if and only if, for each j the jth highest
preference f (k j) is not higher than the jth floor.

There are a total of nn functions on {1, 2, . . . , n}, but how many of them are parking functions?
If we let Pn denote the number of parking functions, surprisingly it turns out that

Pn = (n + 1)n−1

for each n (and we can define P0 = 1). This was first proved by Konheim and Weiss in their orig-
inal paper using recursion and generating functions—a rather complicated method that I won’t
reconstruct here. Instead I’ll examine the problem in two ways. First by constructing a recursive
sequence that yields the number of parking functions, and second by a combinatorial proof that
directly shows that the number of parking functions is (n + 1)n−1.

A recursive sequence for Pn

We can recursively generate a sequence that counts the number of valid parking functions for
n + 1 goats as follows. We first count the number of ways that the first n goats can have their
preferences in n + 1 floors such that every goat gets a spot. After the first n goats have settled,
there will be one empty floor. For a given k ∈ {1, 2, . . . , n + 1}, how many ways can the first n
goats prefer floors such that the (k + 1)th floor is empty after they all settle? The answer to this is(

n
k

)
PkPn−k,

because we must first choose which of the k goats go in the first k spots, then the two groups of k
and n − k goats must respectively settle in their partitions (i.e., in the bottom k floors or the upper
n − k floors). Finally, if the (k + 1)th floor is empty, there are only k + 1 possible floors that the final
(n + 1)th goat can prefer so that it ends up settling in the (k + 1)th floor. The number of parking
functions for n + 1 goats can therefore be computed recursively as

Pn+1 =
n

∑
k=0

(
n
k

)
(k + 1)PkPn−k

where we define P0 = 1.

2



Figure 2: How many ways can n + 1 goats prefer floors? After the first n goats park in the tower,
there must be exactly one floor empty. For each k ∈ {1, 2, . . . n + 1}, there are (n

k) ways to split the
goats into groups that settle on the lower k floors and upper n − k floors respectively. There are
then only k + 1 floors that the last goat can prefer, otherwise it’s condemned to the roof...

It’s worth mentioning that this is the same recursive sequence considered by Konheim and
Weiss in their generating function method. In particular, they considered the function

g(x) =
∞

∑
n=0

Pn

n!
xn

and showed that this function must satisfy g(x) = xeg(x), which in turn is satisfied uniquely by

g(x) =
∞

∑
n=0

(n + 1)n−1

n!
xn.

A combinitorial proof

Here we show a more direct combinatorial proof that Pn = (n + 1)n−1. This proof is due to Pollak
and was first published by Foata and Riordin [2].

To construct all parking functions f : {1, 2, . . . , n} → {1, 2, . . . , n}, let’s first consider a slight
variant of the goats in the tower game.

Consider the same scenario as earlier with the goats (where there are n goats who have pref-
erences for one of the n different floors in the tower), but now label the roof as the (n + 1)th floor
which is an allowable preference and an allowable place for up to one goat to stand. There are now
(n + 1)n ways in which the goats can have preferences in this modified tower. Now, however, if
the roof is full and another goat finds itself on the roof, that goat instead goes back to the groud
floor (floor 1) and tries again. After each goat has situated itself on a floor of the new tower, there
is exactly one floor empty. By symmetry, there are equally many ways for the goat’s preferences
to leave any of the n + 1 floors empty. The preference function on the modified tower is a parking
function exactly when the (n + 1)th is empty (and otherwise it would not be a valid parking func-
tion). Hence, of the (n + 1)n functions from {1, 2, . . . , n} to {1, 2, . . . , n, n + 1}, only 1

n+1 of them

3



yield a valid parking function. Moreover, every possible parking function can be constructed this
way. It follows that

Pn =
(n + 1)n

n + 1
= (n + 1)n−1.

A final note

The original problem statement asks us to find the probability of the goats all ending up on a
floor by themselves, given that each goat chooses its preference randomly. This probability can
therefore be expressed as

(n + 1)n−1

nn .

For n = 10, this is equal to

119

1010 =
2357947691
10000000000

= 0.2357947691,

or roughly 23.6%.

References

[1] Alan G. Konheim and Benjamin Weiss. “An occupancy discipline and applications.” SIAM
Journal on Applied Mathematics 14.6 (1966): 1266-1274.

[2] Dominique Foata and John Riordan. “Mappings of acyclic and parking functions.” Aequationes
Mathematicae 10.1 (1974): 10-22.

4


